PCB酸性镀镍溶液杂质的分析与判断
(1) 镀镍是插头镀金的底层具有较高的耐磨性,是印制电路板电镀镀种之一。由于添加剂的杂质及电镀过程所带来的外来杂质的影响,直接影响镀层质量。
1 铜 0.04 电解处理
2 锌 0.05 电解处理
3 铅 0.002 电解处理
4 铝 0.06 调高PH
5 六价格 0.01 调高PH
6 **杂质 活性炭处理
(2) 排除的具体操作:
A、 电解处理方法:通常采用电流密度,阳极为瓦楞形,目的 是增加阴极面积。处理杂质铜、铅及含硫**添加剂选择、处理时间30分钟;铁、锌杂质采用电解处理。
B、 采用提高PH方法:首先将镀液转移到备用槽内,加入适量的碳酸镍将PH调到,并加入双氧水(30%),搅拌2个小时后过滤,再将镀液转到镀槽内,调整PH值到佳范围,然后进行小电流处理,直到镀出合格的产品。
C、 **杂质处理方法:按照上述提高PH值前在备用槽内加活性炭,然后加碳酸镍和双氧水,搅拌2小时后过滤,再移到镀槽内,调整PH值并进行小电流电解处理,直到镀出合格的产品。
电子必须掌握的电路图集锦
一、稳压电源
1、3~25V电压可调稳压电路图
此稳压电源可调范围在3.5V~25V之间任意调节,输出电流大,并采用可调稳压管式电路,从而得到满意平稳的输出电压。
工作原理:经整流滤波后直流电压由R1提供给调整管的基较,使调整管导通,在V1导通时电压经过RP、R2使V2导通,接着V3也导通,这时V1、V2、 V3的**较和集电极电压不再变化(其作用完全与稳压管一样)。调节RP,可得到平稳的输出电压,R1、RP、R2与R3比值决定本电路输出的电压值。
元器件选择:变压器T选用80W~100W,输入AC220V,输出双绕组AC28V。FU1选用1A,FU2选用3A~5A。VD1、VD2选用 6A02。RP选用1W左右普通电位器,阻值为250K~330K,C1选用3300µF/35V电解电容,C2、C3选用0.1µF石电容,C4选用 470µF/35V电解电容。R1选用180~220Ω/0.1W~1W,R2、R4、R5选用10KΩ、1/8W。V1选用2N3055,V2选用 3DG180或2SC3953,V3选用3CG12或3CG80
2、10A3~15V稳压可调电源电路图
无论检修电脑还是电子制作都离不开稳压电源,下面介绍一款直流电压从3V到15V连续可调的稳压电源,大电流可达10A,该电路用了具有温度补偿特性的,高精度的标准电压源集成电路TL431,使稳压精度较高,如果没有要求,基本能满足正常维修使用,电路见下图。
其工作原理分两部分,部分是一路固定的5V1.5A稳压电源电路。*二部分是另一路由3至15V连续可调的高精度大电流稳压电路。路的电路非常简单,由变压器次级8V交流电压通过硅桥QL1整流后的直流电压经C1电解电容滤波后,再由5V三端稳压块LM7805不用作任何调整就可在输出端产生固定的5V1A稳压电源,这个电源在检修电脑板时完全可以当作内部电源使用。*二部分与普通串联型稳压电源基本相同,所不同的是使用了具有温度补偿特性的,高精度的标准电压源集成电路TL431,所以使电路简化,成本降低,而稳压性能却很高。图中电阻R4,稳压管TL431,电位器R3组成一个连续可调得恒压源,为BG2基较提供基准电压,稳压管TL431的稳压值连续可调,这个稳压值决定了稳压电源的大输出电压,如果你想把可调电压范围扩大,可以改变R4 和R3的电阻值,当然变压器的次级电压也要提高。变压器的功率可根据输出电流灵活掌握,次级电压15V左右。桥式整流用的整流管QL用15-20A硅桥,结构紧凑,中间有固定螺丝,可以直接固定在机壳的铝板上,有利散热。调整管用的是大电流NPN型金属壳硅管,由于它的发热量很大,如果机箱允许,尽量购买大的散热片,扩大散热面积,如果不需要大电流,也可以换用功率小一点的硅管,这样可以做的体积小一些。滤波用50V4700uF电解电容C5和C7分别用三只并联,使大电流输出较稳定,另外这个电容要买体积相对大一点的,那些体积较小的同样标注50V4700uF尽量不用,当遇到电压波动频繁,或长时间不用,容易失效。后再说一下电源变压器,如果没有能力自己绕制,有买不到现成的,可以买一块现成的200W以上的开关电源代替变压器,这样稳压性能还可进一步提高,制作成本却差不太多,其它电子元件无要求,安装完成后不用太大调整就可正常工作。
在PCB电路板设计中,可以通过分层、恰当的布局布线和安装实现PCB电路板的抗ESD设计。在设计过程中,通过预测可以将绝大多数设计修改于增减元器件。通过调整PCB布局布线,能够很好地防范ESD
来自人体、环境甚至电子设备内部的静电对于精密的半导体芯片会造成各种损伤,例如穿透元器件内部薄的绝缘层;损毁MOSFET和CMOS元器件的栅较;CMOS器件中的触发器锁死;短路反偏的PN结;短路正向偏置的PN结;熔化有源器件内部的焊接线或铝线。为了消除静电释放(ESD)对电子设备的干扰和破坏,需要采取多种技术手段进行防范。
在PCB电路板的设计当中,可以通过分层、恰当的布局布线和安装实现PCB电路板的抗ESD设计。在设计过程中,通过预测可以将绝大多数设计修改于增减元器件。通过调整PCB布局布线,能够很好地防范ESD。以下是一些常见的防范措施。
尽可能使用多层PCB,相对于双面PCB而言,地平面和电源平面,以及排列紧密的信号线-地线间距能够减小共模阻抗和感性耦合,使之达到双面PCB的1/10到1/100。尽量地将每一个信号层都紧靠一个电源层或地线层。对于**层和底层表面都有元器件、具有很短连接线以及许多填充地的高密度PCB电路板,可以考虑使用内层线。
对于双面PCB来说,要采用紧密交织的电源和地栅格。电源线紧靠地线,在垂直和水平线或填充区之间,要尽可能多地连接。一面的栅格尺寸小于等于60mm,如果可能,栅格尺寸应小于13mm。
确保每一个电路尽可能紧凑。
尽可能将所有连接器都放在一边。
如果可能,将电源线从卡的引入,并远离容易直接遭受ESD影响的区域。
在引向机箱外的连接器(容易直接被ESD击中)下方的所有PCB层上,要放置宽的机箱地或者多边形填充地,并每隔大约13mm的距离用过孔将它们连接在一起。
在卡的边缘上放置安装孔,安装孔周围用无阻焊剂的**层和底层焊盘连接到机箱地上。
PCB电路板装配时,不要在**层或者底层的焊盘上涂覆任何焊料。使用具有内嵌垫圈的螺钉来实现PCB与金属机箱/屏蔽层或接地面上支架的紧密接触。
在每一层的机箱地和电路地之间,要设置相同的“隔离区”;如果可能,保持间隔距离为0.64mm。
在卡的**层和底层靠近安装孔的位置,每隔100mm沿机箱地线将机箱地和电路地用1.27mm宽的线连接在一起。与这些连接点的相邻处,在机箱地和电路地之间放置用于安装的焊盘或安装孔。这些地线连接可以用刀片划开,以保持开路,或用磁珠/高频电容的跳接。
如果电路板不会放入金属机箱或者屏蔽装置中,在电路板的**层和底层机箱地线上不能涂阻焊剂,这样它们可以作为ESD电弧的放电极。
要以下列方式在电路周围设置一个环形地:
(1)除边缘连接器以及机箱地以外,在整个四周放上环形地通路。
(2)确保所有层的环形地宽度大于2.5mm。
(3)每隔13mm用过孔将环形地连接起来。
(4)将环形地与多层电路的公共地连接到一起。
(5) 对安装在金属机箱或者屏蔽装置里的双面板来说,应该将环形地与电路公共地连接起来。不屏蔽的双面电路则应该将环形地连接到机箱地,环形地上不能涂阻焊剂,以便该环形地可以充当ESD的放,在环形地(所有层)上的某个位置处至少放置一个0.5mm宽的间隙,这样可以避免形成一个大的环路。信号布线离环形地的距离不能小于0.5mm。
作为一个微电子的IC learner,这个学期也有一门课:《微电子器件》,今天我就来聊聊基本的器件:CMOS器件及其电路。在后面会聊聊锁存器和触发器。
今天的主要内容如下所示:
·MOS晶体管结构与工作原理简述
·CMOS单元电路与版图
·CMOS门电路
·CMOS的功耗表示
老实说,CMOS比较偏微电子器件,微电子器件还真难...这里我就说一些做数字设计或许要了解的东西吧(以后要是有必要,会补充)。
1、MOS晶体管结构与工作原理简述
我们或多或少知道,晶体管在数字电路中的主要作用就是一个电子开关,通过电压或者电流,控制这个“开关”开还是关。晶体管大概有两种分类:一种是双极性晶体管(BJT,bipolar junction transistor),另外一种是金属-氧化物-半导体场效应晶体管(MOSFET或者MOS,metal-oxide-semiconductor field effect transistor)。我们这里主要来聊聊MOS了,那个BJT在现在数字IC设计中已经不是主流工艺了。
①MOS晶体管分为PMOS和NMOS,是哪一类MOS取决于衬底和掺杂浓度。至于是怎么形成的,这太复杂了,简单的三言两语说不清楚,这里干脆就不说了,我们直接来看他们的截面图和简单地讲解它们的工作原理好了(以下均以NMOS为例)。
NMOS晶体管的横截面结构如下所示:
IC设计:CMOS器件及其电路
底层是硅晶元圆衬底(substrate)(Body Si那里),**上是导电的栅较(gate),中间是二氧化硅构成的绝缘层。在过去栅较是由金属构成的,因此叫做金属-氧化物-半导体,现在的栅较使用的是多晶硅(poly)。MOS结构中,金属(多晶硅)与半导体衬底之间的二氧化硅会形成一个电容。
好吧,上面那一段看不懂也没关系,也不重要,需要你记住的是,上述的NMOS晶体管中,衬底是P型的,衬底上有两个n型的掺杂区域分别称为源较(Source)和漏较(Drain)(其实你把左边定义为漏而右边定义为源也没有问题,因为这个时候这个器件是对称的,在连接电源和地之后,S和D才真正确定),中间上面的称为栅较(Gate),这就是NMOS的三个电极了(实际上的MOS是一个4端器件,它的衬底也是一个端)。下面来说一下他们怎么工作。
**我们说了,晶体管的作用就是大致就是一个开关,在电流或者电压的控制下进行开和关,对于NMOS晶体管,我们现在给它加上电压,让它开始工作:
IC设计:CMOS器件及其电路
如上左图所示,加上电压后,所谓的源较,就相当于电子的源头;所谓的漏较,就相当于漏出电子的开口;而中间的栅较,就像控制开关一样:一方面通过控制在栅较施加的高电平电压,使源漏之间出现沟道,电子通过沟道从源较流向漏较,电流的方向也就是从漏到源了,从而进行导电,也就是“开关”打开的的时候(由于是形成的N沟道,也就是电子导电,因此成为N型CMOS)。另一方面再通过控制在栅较施加低电平电压,让沟道关断,因此就源漏之间就关断了,也就是“开关”关断的时候。上面就是NMOS的结构和工作流程了。(PMOS的工作流程恰好相反:通过控制在栅较施加的低电平电压,进行打开,而通过控制在栅较施加高电平电压,让沟道关断。)
注意:栅较的电压达到一定数值时,沟道才会形成,沟道形成时的电压称为阈值电压(Vth)。
②下面我们来看一下I-V特性曲线(注意这两个称呼,一个是转移特性曲线,一个是输出特性曲线):
IC设计:CMOS器件及其电路
在**我们知道,对于NMOS,源较(S)是接地的,漏较(D)是接数字电源的,在工作的时候,一般Vds是不变的,然后根据栅较(G)上的电压决定沟道是否导通。工作的时候,Vg的值(也就是输入信号的电压值)是一个定值,要么高电平(可能有波动),要么是低电平,从这里我们也知道NMOS工作的时候,是有电流从电源(VDD)流到地(GND)的(也就是从D流到S的),在电源电压不变的时候,这个电流随着栅较上的电压而。
③接着我们看看MOS的内部自个形成的电容(寄生电容),如下图所示:
IC设计:CMOS器件及其电路
主要分为:
(1)栅和沟道之间的氧化层电容C1;
(2)衬底和沟道之间的耗尽层电容C2;
(3)多晶硅栅与源和漏的交叠而产生的电容C3 和C4;
(4)源/漏区与衬底之间的结电容C5与C6。
好吧,其实这些个MOS这个电容我们看看就好了,毕竟我们不是做器件的。
2、CMOS单元电路与版图
在现在工艺中,我们主要使用的是成为CMOS(互补型半导体,Complementary MOS)的工艺,这种工艺主要就是把PMOS和NMOS这两类晶体管构成一个单元,称为CMOS单元或者反相器单元,其结构把PMOS和NMOS同时集成在一个晶元上然后栅较相连,漏较相连,下面是它的结构图(关于电路符号和功能将在后面讲):
IC设计:CMOS器件及其电路
在上图中,左边是NMOS,右边是PMOS。A是共连栅较输入,Y是共连漏较输出,VDD连接PMOS的源较,GND连接GND。
下面电路符号图了,上面的那个CMOS反相器对于的电路符号图如下所示:
IC设计:CMOS器件及其电路
现在我们就来分析一下这个CMOS反相器的工作原理来说明这个为什么CMOS工艺是主流吧:
A当输入信号A=1时,PMOS关断,NMOS打开,输出信号Y的电压相当于GND的电压,也就是Y=0;在这个过程中,从VDD到GND这一个供电回路都没有导通,因此理论不存在电流从VDD流到GND,因此功耗为0.
B当输入信号A=0时,PMOS打开,而NMOS关闭,输出信号Y=VDD=1,但是从VDD到GND这一个供电回路也没有导通,因此理论上也不存在电流从VDD流到GND,因此功耗也为0。
C因此可以得出,理论上反相器进行传输信号时,没有功耗(好吧,我们应该这样说:功耗较其地低),这就是为什么使用CMOS的工艺的原因。
下面我们来看一下CMOS单元的版图:
IC设计:CMOS器件及其电路
左边是CMOS的电路符号,右边是版图(这个版图先凑合着看),下面来说一下这个版图吧:
首先是从下往上看,金属(蓝色)连接到数字地(Vss)上面;白色背景红色虚线边框的P阱区域是为说明,下面的绿色掺杂区域形成的是NMOS,上面绿色掺杂区域形成的是PMOS;
然后 绿色的掺杂区域 分布在 红色的多晶硅附近,然后多晶硅连在一起(也就是把PMOS和NMOS的栅较连在一起),然后通过金属引出(那个X表示通孔)为输入Vi。
然后下面的NMOS的源较通过通孔跟金属连在一起(绿色跟蓝色通过X连在一起);NMOS和PMOS的漏较通过通孔连接到同一块金属上面然后当做输出。
PMOS的源较通过通孔连接到金属然后连接到了数字电源上。
较加抽象(好看一点)的图如下所示:
IC设计:CMOS器件及其电路
版图的基本知识就到这好了,较详细的知识还是查看较的书籍吧。
3、CMOS门电路
①CMOS非门:上面的一个CMOS单元的功能就是非门的功能了,因此CMOS非门也就是这个CMOS的单元,也称为反相器。其电路结构就是反相器的电路结构。
②(二输入)CMOS与非门(NAND):
直接上图吧,CMOS与非门的电路符号结构如下所示:
IC设计:CMOS器件及其电路
(PMOS的电路符号栅较处本来应该有个小圈圈,表示低电平有效的)
③(二输入)CMOS或非门(NOR)的电路符号和工作原理如下所示:
IC设计:CMOS器件及其电路
(PMOS的电路符号栅较处本来应该有个小圈圈,表示低电平有效的)
数字逻辑电路都可以由上面的三种电路化简构成,也就是说一个电路可以由NAND或者NOR电路构成,我们来看看他们的特点来推导数字CMOS电路的特点。
容易知道(反正我们就当做结论好了):
反相逻辑门的通用结构如下所示:
IC设计:CMOS器件及其电路
此外我们也注意到,使用到与功能的时候,NMOS网络是串联的;使用或功能时,NMOS网络是并联的。因此可以这么记忆:要NOMS都一起,才能一起(与),只要NMOS其中一个就可以(或),与还是或,可以根据NMOS的串并结构判断。
然后设计多少个输入的NXXX门,就把多少个NMOS串/并联起来,然后PMOS就是并/串就可以了。
4、CMOS的功耗表示
功耗是单位时间内消耗的能量,在数字系统中的功耗主要包括静态功耗和动态功耗,我们将从CMOS电路角度聊聊静态功耗和动态功耗。
CMOS的静态功耗:当CMOS不翻转/不工作时的功耗。在CMOS都不工作时,也就是晶体管都处于截止状态的时候,从VDD到GND并不是完全没有电流流过的,还是有些微电流从电源流到地,这个静态电流Idd称为电源和地之间的漏电流,跟器件有关(至于漏电流是怎么引起的,这里就不再阐述了)。初中的时候,我们就学过P=UI,因此静态功耗就可以这样表示 :
IC设计:CMOS器件及其电路
CMOS的动态功耗是信号在0和1变化之间,电容充放电所消耗的功耗。我们知道,不仅仅CMOS器件有寄生电容,导线间也有电容。将电容C充电到电压Vdd所需要的能量CVdd^2。如果电容每秒变换f次(也就是电容的切换频率为f,在一秒内,电容充电f/2次,放电f/2次),由于放电不需要从电源那里获取功耗,因此动态功耗就可以这样表示:
IC设计:CMOS器件及其电路
PS:上面主要是列举了一些主要的功耗,比如动态功耗中除了翻转时电容消耗功耗外,还有在栅较信号翻转的时候PMOS和NMOS同时导通引起的短路功耗。
这里不一一陈述,主要是考虑上面的那两种功耗。也许后面记载低功耗设计的时候会详细说明一下。
深圳市凡亿技术开发有限公司成立于2013年,以美国硅谷技术为基础,致力于高性价比的PCB产品服务:提供电路板设计服务、电路板设计教育咨询、中**PCB快捷打样,中小批量电路板生产制造服务,自创立以来,公司始终坚持以技术为向导,追求品质和客户持续满意的经营理念,为我国信息电子行业的创新持续提供优质服务。 我司PCB layout设计秉承"好的设计"="设计质量"+"成本控制";依靠多年来的PCB设计、加工制造经验,总结制定了详细、严谨的设计管理流程,质量控制标准,QA控制体系等。以技术与规范、制度和流程来把PCB设计过程中的细节问题和需求标准化,制度化,流程化,以保证每一款产品的设计品质,同时为客户缩短了产品研发时间和降低了PCB制板成本;设计产品涉及领域有:网络通信、工控、医疗、、**、计算机服务器、汽车电子、消费电子、便携设备、手机板设计等。 我司PCB生产定位2-16层精密电路板样板及小批量为主要目标市场,采用***生产工艺及高品质原材料,严格规范作业标准及进出料QC标准,保证出货产品达到精工品质,力求为客户提供较优质、较快捷、较具性价比的线路板产品。凡亿采用自助开发的PCB快板在线订单ERP管理系统,可实现在线下单、在线支付货款、在线查询生产进度、在线物流跟踪、在线统计报表生产等全程无纸化作业,大大提高了工作效率,**了每个订单都能快速出货,借助该网站,不用一个电话,客户足不出户就能让手中的设计稿变成真实的电路板! 凡亿凭借雄厚的技术实力和高品质的服务,严格的知识产品保护措施及良好的商业信誉,并依托完善的互联网,凡亿迅速成为国内和**企业认可的重要伙伴和依托,到目前为止,凡亿业务已拓展到美国、印度、、中国香港等多个和地区,获得了Tensorcom,MR.LOOP,Ubilite, s