屋顶光伏承重检测单位办理承重检测报告多少钱*新闻
4.3 假定荷重:
①固定荷重G
太阳能板质量: G1=20kg×20=400kg →3920N;
所以C形轨道承载的固定荷载重量G=3920N;
②风压荷重W
根据《建筑结构荷载规范》中对风载荷的规定如下(按承重结构设计):
Wk =βgz μs μz W0
Wk:风荷载标准值(KN/m2);
βgz: 高度Z 处的风振系数;
μs: 风荷载体型系数;
μz:风压高度变化系数(0.84);
W0:基本风压(KN/m2)
按《建筑结构荷载规范》表7.5.1ξ为1.6
所以βgz=1.6
根据《建筑结构荷载规范》表F7.3.1,体型系数μs为1.475,
所以,Wk=1.6*0.83*0.84*0.57=0.636KN/m2
③雪压荷重
根据《建筑结构荷载规范》中规定:
Sk=μr*S0;
Sk:雪荷载标准值(KN/m2);
Μr:屋面积雪分布系数;
S0:基本雪压(KN/m2)
根据《建筑结构荷载规范》表6.2.1Μr=0.2
S0为0.35 KN/m2
所以Sk=0.2*0.35=0.07 KN/m2
④地震荷载
根据《建筑抗震设计规范》,采用底部剪力法时,按下列公式确定:
FEk=?1 *Geq
FEk为结构总水平地震作用标准值;
?1为水平地震影响系数值,可取水平地震影响系数值?max;
Geq为结构等效总重力荷载,单质点应取总重力荷载代表值。
由于扬中市没有处于我国的地震带,所以根据《建筑抗震设计规范》表5.1.2-2查得?1为0,
所以FEk为0
⑤荷载基本组合P
根据《建筑结构荷载规范》*3.2节荷载组合,计算如下:
风压主导时 :P=G+W+S
P=3920+636*1.64*0.99*20+70*1.64*0.99*20=26.845KN
C形轨道结构强度计算
C形轨道验算:
顺风时,B-C点产生的力矩M1,由下式表示:
q=(26845/4/10.2=657.97N/m(系统由4排轨道支撑,每排轨道长10.2m)
L=2.073m
应力
由于所使用材料为:允许应力为23500N/cm2 /1.5=15666 N/cm2
(8661.76/15666)<1 所以安全
弯曲δ1
(由4根横梁支撑)
E=6.9×105 N/cm2
IM =12cm4
跨距207.3cm,位移量207.3/100=2.073cm,所以安全;
5屋面配重设计
混凝土屋面太阳能方阵采用主次梁布置,电池板以25°倾角布置;次梁及柱采用表面热镀锌钢型材。本计算书依据2x10(电池板)阵列进行计算,计算简图见图1
5.1 荷载标准值计算
5.1.1.恒荷载:
太阳能板: q=0.2/(1. 64x0. 99) =0.12KN/m2
钢结构自重:q=0.08KN/m2
q=0.20KN/m2
5.1.2.风荷载:
风荷载标准值
扬中市地区基本风压(n=50): (建筑结构荷载规范附录D.4)
离地面高度20米位置 D类地区:
风振系数
体型系数:
风荷载标准值计算:
5.1.3.雪荷载:
雪荷载标准值
扬中市地区基本雪压(n=50):
体型系数:
=0.35 x1=0.35
5.2 荷载组合
*不利负载组合为:1.0恒+1.4风(—)
=1.0x0.20-1.4 x 0.389=-0.3446 KN/m2
5.3 基础校核
电池板投影面积:10.125 m x 2.973m=30.1㎡
负荷载:30.1㎡x 0.3446 KN/㎡=10.37 KN
基础总配重: 1.22KN x10个=12.2 KN
平均载荷:12.2 KN/30.1㎡=0.405KN/㎡
本项目需配置10个1.22KN的基础,基础总配置达到12.2KN ,大于负载荷10.37KN,达到系统要求。
基于此种原因,我们有必要尽快发展我国的光伏产业产业链,积极培养光伏产业的配套企业,争取实现光伏产业原材料生产的国有化,从根本上控制住光伏发电系统的材料成本。
屋顶光伏发电站建设时,需要计算安全承重、光伏防水工作、光伏加固等各种使用问题。
一、当房屋使用过程中达不到安装光伏条件时该怎么办?
可选择下列加固改造方法
01 当圈梁设置不符合鉴定要求时,应增设圈梁当墙体布置在平面内不闭合时,可增设墙段形成闭合,在开口处增设现浇钢筋混凝土框。
02 当纵横墙连接较差时,可采用钢拉杆、长锚杆、外加柱或外加圈梁等加固改造;
03 楼、屋盖板支承长度不能满足要求时,应增设附加支座加大支承长度、托梁或采取增强楼、屋盖整体性的措施;
04 当墙体布置在平面内不闭合时,可增设墙段形成闭合,在开口处增设现浇钢筋混凝土框
现阶段的太阳能板追踪系统控制趋势是利用开环控制系统,根据太阳能辐射的地点和时间,给出太阳辐射方向。当接收器接到温度和流量分布的模拟信号后,计算机根据输入算法中的模拟公式给出每块板支架的偏移量。控制参数的准确性会因时间、经度和纬度、支架位置、处理器精确度和环境干扰等因素而产生误差。
很多太阳辐射位置算法的研究均利用了小型计算机。很多算法利用微型计算机增加了追踪精确度。但研究表明此种算法只在有效时间段内有效[7]。大型计算机在长期数据监测下可以准确预测太阳辐射位置并将误差缩小至0.003度,但经济成本太高。
3.3 降低环境温度
通过加空调等散热装置对屋顶光伏进行技术改造,从而消除环境温度变化产生的影响。将散热装置的温度控制数据作为控制参数,设定为光伏组件的理想环境工作温度,将温度对光能产出的影响降至*小。也可灵活采用物理降温,机器清扫等方式,根据季节及气候变化进行应对。
对大唐上海综合保税区32MWP屋顶光伏太阳能2013年至2015年的产出数据进行分析,对比发现产出值仅达设计值的70%。发电量曲线变化同光照曲线变化一致,但单机产出率低。
温度是影响光伏组件产出的重要因素。当环境温度**25oC时,电能损失为标准测试条件(STC)功率的10%,光谱、组件衰减和其他因素会导致约7.7%的电能损失。光伏组件的不同材料在不同的光谱分布下将产生不同的电能输出。电路原因造成的组件不可逆损伤也是原因。
可以通过加装跟踪式太阳能板,引入监控控制系统和机械降温等方式提高光能产出率。
光伏电站;数据采集系统;集成检测系统
随着对于新能源的开发和利用,并在国家相关政策的支持下我国的光伏电站行业的到了迅速的发展。至2013年我国光伏电站已达到了1716万-千瓦的装机总量。因为光伏电站的装设适用与任何能够**光能的地方决定了光伏发电的随机性和波动性等特征。现在光伏电站实行并网运行,这就给电网的安全运行产生了一定的影响,为保证电网的安全运行必须对光伏电站进行检测评估。经过相关研究一些检测系统被研发,本文将针对光伏电站特有的环境因素采用光伏电站集成检测系统设计进行阐述。
屋顶承重问题一直是光伏电站设计之初必须考虑到的问题,屋顶可承受的太阳能电站设备重量是如何计算的呢?
控制参数的准确性会因时间、经度和纬度、支架位置、处理器精确度和环境干扰等因素而产生误差。
公司是一家专业从事建筑主体结构检测鉴定的第三方*机构,公司经深圳市工商局合法注册,并**广东省质量技术监督局颁发的检验检测机构资质认定证书(即CMA认证),可以向社会出具具有证明作用的数据和结果。公司拥有自有实验室,检测办公场使用面积**过1000 平米,各项检测仪器设备齐全,且经过严格的校准,操作人员经过严格训练,熟练掌握各项仪器设备的操作及维护工作。公司有健全的各项规章制度,有明确的岗位责任制和完善的管理体系,拥有一支作风严谨,协作有力的高素质检测团队。公司现有现在员工30多名,其中工程技术人员20多名,现场检测协助人员10多名,办公室文职人员6名。其中工程技术人员中具有**技术职称2名,中级技术职称2名,初级技术职称16名,检测人员全部**了国家或地方主管部门颁发的资格证书。公司紧跟国家发展步伐,与时俱进,立足深圳,面向全国开展建筑物主体结构检测鉴定业务,目前已在全国各地设置分支机构。如北京、天津、辽宁、江苏、安徽、山东、河南、河北、广西、海南、福建、江西、内蒙古、吉林、西藏等各地均设有办事处。公司以“遵规守法、为民服务”为宗旨,以“优质高效、信誉”为质量方针,不断拓展业务领域和服务范围,不断提高全员素质和各项检测能力,加强检测全过程质量控制,以保证质量管理体系的有效运行, 保证检测工作的公正性、科学性和准确性,较好地为社会服务。