优尔鸿信检测高分子材料实验室多年从事高分子材料各项性能及成分检测服务,实验室配备有傅里叶变换红外光谱仪FTIR,热裂解PY-GCMS,差示扫描量热法仪DSC,热重分析仪TGA等用于塑料及**物成分分析设备,可针对高分子材料、塑胶材料及异物进行成分检测,并判定其牌号。
傅里叶变换红外光谱简称FTIR, 能够区分和识别不同类型的**分子,在塑料、橡胶、纤维、涂层、填料等高分子及无机非金属材料的定性与定量分析中有广泛应用。
FTIR测试原理:
傅里叶变换红外光谱仪利用红外光源发出的宽频谱红外光,通过干涉仪系统进入样品室。在样品室中,红外光与待测样品相互作用,样品会吸收特定波长的红外光,从而产生吸收光谱。这些光谱信息随后涉仪捕获,并通过傅里叶变换转换为频域信号,终显示在光谱图上。
FTIR测试用途:
1.成分分析:
高分子材料识别:FTIR能够通过检测材料吸收特定波长的红外光来识别其分子结构中的化学键和官能团,从而准确区分不同种类的高分子材料,如聚乙烯、聚、聚氯乙烯等。
添加剂与杂质分析:在高分子材料中,添加剂(如抗氧化剂、增塑剂)和杂质的存在会影响材料的性能。FTIR能够检测并量化这些成分,帮助评估材料质量。
2.分子结构表征:
化学键与官能团分析:FTIR光谱中的吸收峰与特定的化学键和官能团相对应,通过分析这些峰的位置、强度和形状,可以深入了解材料的分子结构特征。
3.老化与降解分析:
高分子材料老化评估:在环境应力(如热、光、氧)作用下,高分子材料会发生老化降解。FTIR能够检测老化过程中产生的特定官能团或化学键的变化,评估材料的耐老化性能。
降解产物分析:对于降解后的高分子材料,FTIR可以识别并分析其降解产物,为理解降解机制、开发新型稳定剂提供重要信息。
4.质量控制:
产品一致性检验:在工业生产中,FTIR可用于快速检验产品是否符合既定的成分和结构标准,确保产品质量的一致性。
5.异物分析/失效分析:
污染物检测:FTIR可用于检测环境中异常生成**污染物,如塑料微粒、**溶剂残留等。
傅里叶变换红外光谱仪具有信噪比高、分辨率好、测量速度快等优点,广泛应用于高分子材料、医药化工、地矿、石油、煤炭、环保、海关、宝石鉴定、刑侦鉴定等领域。它不仅可以用于样品的定性和定量分析,还可以用于监测化学反应过程、评估材料的耐老化性能等方面。
电子电器中的有害物质主要包括铅、、镉、六价铬等重金属,以及和多二醚等化阻燃剂。这些物质在电子电器的制造过程中被广泛应用,如印刷电路板、电池和电池组部件、涂料、颜料、墨水、染料等,都可能含有这些有害物质
电子电器有害物质检测法规:
电子电器常用的法规有中国的 《电器电子产品有害物质限制使用管理办法》和GB/T 39560系列标准,欧盟的RoHS指令和REACH法规。这些法规是为了控制和减少电器电子产品废弃后对环境造成的污染,促进电器电子行业清洁生产和资源综合利用,鼓励绿色消费,保护环境和人体健康而制定的。
中国版RoHS指令
GB/T 39560系列标准是中国RoHS 2.0新的配套检测标准,用于替代原有的GB/T 26125-2011标准。这一新系列标准共包含9个标准,其检测项目主要涉及电子电气产品中特定有害物质的测定。
GB/T 39560系列标准检测项目包括铅(Pb)、镉(Cd)、(Hg)、六价铬(Cr(VI))、(PBBs)、多二醚(PBDEs)以及邻二酯(Phthalates)。此外,该系列标准还涉及总铬(total Cr)和总(total Br)的测定。
欧盟RoHS指令
欧盟RoHS 2.0具体项目包括以下10项:
铅(Pb);镉(Cd);(Hg);六价铬(Cr6+);(PBBs);多二醚(PBDEs);(DIBP);邻二(2-乙基己基酯)(DEHP);邻二丁苄酯(BBP);邻二二丁酯(DBP)。
RoHS 2.0的拆分原则
用机械手段拆分到不能再拆分的小单元;
样品检测基于均质单元,不接受混检;
颜色不同的材料应拆分为不同的检测单元。
电子电器有害物质检测常规项目:
RoHS四项/六项/十项管控物质
卤素含量检测
四双A(TBBPA)检测
环硅氧烷含量检测
重金属含量检测
镍释放量检测
多环芳香烃(PAHs)检测
领二酯
(HBCCD) 检测
化石蜡/CP检测
富马酸二甲酯(DMF)
全辛烷(PFOS)检测
全辛酸及其盐类检测 等
金属元素含量检测方法有哪些?
金属元素含量检测是重要的,尤其在环境、食品安全、工业生产等领域,准确的金属含量测定至关重要。以下是一些常见的金属元素含量检测方法:
1.原子吸收光谱法 (AAS)
原子吸收光谱法是常用的金属元素检测方法之一。其原理是通过测量样品中元素的原子吸收特定波长光的能力来确定其含量。常用于检测铅、镉、锌、铜等金属元素。AAS具有高灵敏度、操作简便的优点,但通常只适合于检测单一金属元素。
2. 电感耦合等离子体质谱法 (ICP-MS)
ICP-MS结合了电感耦合等离子体的激发能力和质谱的高分辨率能力,能够对样品中的多种金属元素进行同时检测。它具有高的灵敏度和准确性,能够检测出痕量金属元素,适用于环境样品、食品、药品等的检测。缺点是设备昂贵,操作复杂。
3. 电感耦合等离子体**光谱法 (ICP-OES)
ICP-OES利用电感耦合等离子体激发样品中的元素,使其发出特定波长的光,通过检测光的强度来确定元素含量。这种方法检测速度快、能够同时检测多种元素,广泛应用于环境、地质、冶金等领域。与ICP-MS相比,ICP-OES的灵敏度稍低,但设备成本和维护成本相对较低。
4. X射线荧光光谱法 (XRF)
XRF是一种非破坏性的分析方法,通过测量样品在X射线照射下发出的荧光射线的能量和强度,来确定金属元素的种类和含量。XRF具有快速、样品前处理简单的优点,但对于某些轻元素(如、)的检测灵敏度较低。
5. 分光光度法
分光光度法通过测量特定波长下溶液的吸光度来确定金属离子的浓度。它适用于检测一些具有特定颜色反应的金属离子,比如铁、铜等。虽然该方法成本低、操作简便,但灵敏度和选择性相对较低。
6. 扫描电镜法(EDS)
扫描电镜利用高能量电子束轰击样品表面,激发出样品表面的物理信号,再利用不同的信号探测器接受物理信号转换成图像信息,可对陶瓷、金属、粉末、塑料等样品进行形貌观察和成分分析,EDS:成分分析(半定量),通过特征X-RAY获取样品表面的成分信息。
金属元素的检测方法多种多样,每种方法都有其特的优点和适用范围。选择合适的检测方法需要考虑检测元素的种类、浓度范围、样品基质以及分析的精度要求。根据实际应用场景,科学合理地选择检测方法能够有效提高分析的准确性和可靠性。
傅里叶变换红外光谱仪(FTIR)是一种广泛应用于化学、材料科学、环境科学等领域的分析仪器。它通过测量分子对特定频率红外光的吸收来确定样品的化学成分和结构。
FTIR测试用途:
1.成分分析:
识别和定量样品中的化学成分,包括**化合物、无机化合物和高分子材料。
如研究涂层和薄膜的化学成分;
药物成分的鉴定、药物配方的分析以及药物质量控制;
检测食品中的添加剂、污染物、营养成分等。
分析纳米材料的表面功能化和化学组成。
2.分支结构分析:通过分析分子振动模式,FTIR 能够提供分子结构的信息,包括化学键的类型、官能团的存在以及分子间的相互作用。
3.高分子材料分析:用于研究聚合物的化学结构、结晶度、交联度和分子量分布等。
4.失效分析:用于分析材料失效的原因,比如老化、氧化、腐蚀等。
5.环境监测:检测大气、水体和土壤中的污染物,如挥发性**化合物(VOCs)、多环芳烃(PAHs)等。
FTIR凭借其快速、无损及高度敏感的特点,成为了材料科学领域主要的分析手段之一。无论是基础研究还是实际应用,FTIR都能提供宝贵的化学信息。正确解读FTIR数据通常需要一定的知识和经验,有时还需要与其他技术相结合,以获得较全面的理解。
优尔鸿信检测技术(深圳)有限公司旗下的成都检测中心(华南检测中心成都分支)成立于1996年,配合高科技电子产品设计、验证、生产过程的检测需求组建科技实验室,创始团队汇集科技精英、凭借雄厚的技术背景和开拓创新精神,在一张白纸上点石成金。华南检测中心迄今发展成目**大功能22个专业的实验室,主要检测设备4300余台(套),拥有1500人的管理、技术人员团队,打造了一个提供快速、精密、准确检测能力、服务网络遍及全国的大型旗舰实验室。于2003年**中国国家合格评定**(CNAS)的初次认可,检测能力获得苹果、戴尔、惠普等**客户的认可,实现[一份报告、**通行]。 检测业务主要分为:尺寸量测与3D工程、仪器校准、材料分析(金属、塑料)、有害物质检测、电子零组件失效分析、物流包装测试、可靠性分析(气候、机械)、仿真分析、热传测试、声学测试、食材检测(微生物、理化检测)、儿童玩具测试、汽车材料及零部件检测、产品认证等。