什么是一体化污水处理设备?
国内外采用的污水处理工艺很多,其中主要分为活性污泥法和生物膜法两种,我们常见的普通曝气法、氧化沟法、A/B法、A2/O法属于前者,生物转盘、接触氧化法属于后者。一体化污水处理设备是将一沉池、I、II级接触氧化池、二沉池、污泥池集中一体的设备,并在I、II级接触氧化池中进行鼓风曝气,使接触氧化法和活性污泥法有效的结合起来,同时具备两者的优点,并克服两者的缺点,使污水处理水平进一步提高。
一体化污水处理设备工艺:
详细介绍(污泥沉淀池)
沉淀池的作用
沉淀池的作用主要是去除悬浮于污水中可以沉淀的固体悬浮物,在不同的工艺中,所分离的固体悬浮物也有所不同。例如在生物处理前的沉淀池主要去除无机颗粒和**物质,在生物处理后的沉淀池主要是分离水中的微生物固体。
沉淀池按其构造类型可分为:平流式沉淀池、辐流式沉淀池、竖流式沉淀池,另外还有斜板(管)式沉淀池和迷宫沉淀池。在污水处理中,按照其在工艺的位置可分为初次沉淀池和二次沉淀池。
沉淀池是利用重力沉降作用将密度比水大的悬浮颗粒从水中去除的处理构筑物,是废水处理中应用广泛的处理单元之一,可用于废水的处理、生物处理的后处理以及深度处理。
在沉砂池应用沉淀原理可以去除水中的无机杂质,在初沉池应用沉淀原理可以去除水中的悬浮物和其他固体物,在二沉池应用沉淀原理可以去除生物处理出水中的活性污泥,在浓缩池应用沉淀原理分离污泥中的水分、使污泥得到浓缩,在深度处理领域对二沉池出水加絮凝剂混凝反应后应用沉淀原理可以去除水中的悬浮物。
沉淀池的工作原理
沉淀池是利用水流中悬浮杂质颗粒向下沉淀速度大于水流向卜流动速度、或向下沉淀时间小于水流流出沉淀池的时间时能与水流分离的原理实现水的净化。
沉淀池的作用
理想沉淀池的处理效率只与表面负荷有关,即与沉淀池的表面积有关,而与沉淀池的深度无关,池深只与污泥贮存的时间和数量及防止污泥受到冲刷等因素有关。而在实际连续运行的沉淀池中,由于水流从出水堰**溢流会带来水流的上升流速,因此沉淀速度小于上升流速的颗粒会随水流走,沉淀速度等于卜-升流速的颗粒会悬浮在池中,只有沉淀速度大于上升流速的颗粒才会在池中沉淀下去。而沉淀颗粒在沉淀池中沉淀到池底的时间与水流在沉淀池的水力停留时间有关,即与池体的深度有关。
理论上讲,池体越浅,颗粒越容易到达池底,这正是斜管或斜板沉淀池等浅层沉淀池的理论依据所在。为了使沉淀池中略大于上升流速的颗粒沉淀下去和防止已沉淀下去的污泥受到进水水流的扰动而重新浮起,因而在沉淀区和污泥贮存区之间留有缓冲区,使这些沉淀池中略大于上升流速的颗粒或重新浮起的颗粒之间相互接触后,再次沉淀下去。
沉淀池的结构
沉淀池包括进水区、沉淀区、缓冲区、污泥区和出水区五个部分。进水区和出水区的作用是使水流均匀地流过沉淀池,避免短流和减少紊流对沉淀产牛的不利影响,同时减少死水区、提高沉淀池的容积利用率;
沉淀区也称澄清区,即沉淀池的工作区,足可沉淀颗粒与废水分离的区域;污泥区是污泥贮存、浓缩和排出的区域;缓冲区则是分隔沉淀区和污泥区的水层区域,保证已经沉淀的颗粒不因水流搅动而再行浮起。
一体化污水处理设备工艺:
详细介绍(水解酸化池)
水解酸化池
1、化粪池中的污水经潜水泵提升进入该池,并接纳二沉池回流的污泥。池内填充水解填料,有
较好的截流和效果,高分子**物水解成低分子**物,难降解**物水解成易降解**物,提高可 生化性能;好氧剩余污泥在其中厌氧消化,可减少污泥量,在缺氧、反硝化作用下,具有脱氮的 效果。内设组合填料。 A/O 工艺将前段缺氧段和后段好氧基础氧化段串联在一起,A 段DO 不大于 0.2mg/L,在缺氧 段异养菌将污水中的悬浮污染物和可溶性**物水解为**酸,使大分子**物分解为小分子** 物,不溶性的**物转化成可溶性**物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,可 提高污水的可生化性及氧的效率;在水解酸化缺氧段,异养菌将蛋白质、脂肪等污染物进行氨化(有 机链上的 N 或氨基酸中的氨基)游离出氨(NH3、NH4+),在充足供氧条件下,自养菌的硝化作 用将 NH3-N(NH4+)氧化为 NO3-,通过回流控制返回至水解酸化池,在缺氧条件下,异氧菌的 反硝化作用将 NO3-还原为分子态氮(N2)完成 C、N、O 在生态中的循环,实现污水生化处理
2、水解酸化生物处理工艺出现于20世纪80年代。该工艺不具有厌氧消化过程中对环境条件严格要求,及降解速度较慢的甲烷发酵阶段,将系统控制在缺氧状态下的水解酸化阶段。其原理是通过水解菌、产酸菌释放的酶促使水中难以生物降解的大分子物质发生生物催化反应,具体表现为断链和水溶,微生物则利用水溶性底物完成胞内生化反应,同时排出各种**酸。
水解酸化过程能将废水中的非溶解态**物截留并逐步转变为溶解态**物,一些难于生物降解大分子物质被转化为易于降解的小分子物质如**酸等,从而使废水的可生化性和降解速度大幅度提高,以利于后续好氧生物处理。
⑴ 水解池的启动通过调整水力停留时间利用水解、产酸与甲烷菌生长速度的不同。利用水的流动造成甲烷菌在反应器中难于繁殖的条件。省去了气体回收部分。
⑵具有较好的抗**负荷冲击能力。
⑶水解过程可改变污水中**物形态及性质有利于后续好氧处理。水解、产酸阶段的产物主要为小分子的**物,可生物降解性一般较好。因此水解池可以改变原污水的可生化性,从而减少反应时间和处理的能耗。
⑷对固体**物的降解可减少污泥量,其功能于消化池一样。工艺仅产生很少的难厌氧降解的剩余污泥,故能实现污水、污泥同时处理,不需要经常加热的中温消化池。
⑸池子不需要密闭,不需要搅拌器,不需要水、气、固三相分离器,降低了造价和便于维护。
⑹由于反应控制在*二阶段完成前,出水无厌氧发酵的不良气味。
一体化污水处理设备工艺:
详细介绍(好氧池)
好氧池的作用是让活性污泥进行有氧呼吸,进一步把**物分解成无机物。去除污染物的功能。运行好是要控制好含氧量及微生物的其他各需条件的好,这样才能是微生物具有效益的进行有氧呼吸。
厌氧处理是利用的作用,去除废水中的**物,通常需要时间较长。厌氧过程可分为水解阶段、酸化阶段和甲烷化阶段。
污水处理按照其作用可分为物理法、生物法和化学法三种,具体如下:
①物理法:主要利用物理作用分离污水中的非溶解性物质,在处理过程中不改变化学性质。常用的有重力分离、离心分离、反渗透、气浮等。物理法处理构筑物较简单、经济,用于村镇水体容量大、自净能力强、污水处理程度要求不高的情况。
②生物法:利用微生物的新陈代谢功能,将污水中呈溶解或胶体状态的**物分解氧化为稳定的无机物质,使污水得到净化。常用的有活性污泥法和生物膜法。生物法处理程度比物理法要高。
③化学法:是利用化学反应作用来处理或回收污水的溶解物质或胶体物质的方法,多用于工业废水。常用的有混凝法、中和法、氧化还原法、离子交换法等。化学处理法处理效果好、费用高,多用作生化处理后的出水,作进一步的处理,提高出水水质。
生化处理根据微生物生长对氧环境的要求的不同,可分为好氧生化处理与缺氧生化处理两大类,缺氧生化处理又可分为兼氧生化处理和厌氧生化处理。在好氧生化处理过程中,好氧微生物必须在大量氧的存在下生长繁殖,并降低废水中的**物质;而兼氧生化处理过程中,兼氧微生物只需要少量氧即可生长繁殖并对废水中的**物质进行降解处理,如果水中氧太多,兼氧微生物反而生长不好从而影响它对**物质的处理效率。
生化处理根据微生物生长对氧环境的要求的不同,可分为好氧生化处理与缺氧生化处理两大类,缺氧生化处理又可分为兼氧生化处理和厌氧生化处理。在好氧生化处理过程中,好氧微生物必须在大量氧的存在下生长繁殖,并降低废水中的**物质;而兼氧生化处理过程中,兼氧微生物只需要少量氧即可生长繁殖并对废水中的**物质进行降解处理,如果水中氧太多,兼氧微生物反而生长不好从而影响它对**物质的处理效率。
兼氧微生物可适应cod浓度较高的废水,进水cod浓度可提高到2000mg/l以上,cod去除率一般在50-80%;而好氧微生物只能适应于cod浓度较低的废水,进水cod浓度一般控制在1000-1500mg/l以下,cod去除率一般在50-80%。
兼氧生化处理和好氧生化处理的时间都不太长,一般12-。人们利用兼氧生化和好氧生化之间的差别和相同之长,将兼氧生化处理和好氧生化处理组合起来,让cod浓度较高的废水行兼氧生化处理,再让兼氧池的处理出水作为好氧池的进水,这样的组合处理可以减少生化池的容积,既节省了环保投资又减少了日常的运行费用。
厌氧生化处理与兼氧生化处理的原理和作用是一样的。厌氧生化处理与兼氧生化处理的不同之处是:厌氧微生物繁殖生长及其对**物质降解处理的过程中不需要任何氧,而且厌氧微生物可适应较高cod浓度的废水(4000-10000mg/l)。厌氧生化处理的缺点是生化处理时间很长,废水在厌氧生化池内的停留时间一般需要40小时以上。
一体化污水处理工艺:
详细介绍(厌氧池)
厌氧池在厌氧处理过程中,废水中的**物经大量微生物的共同作用,被终转化为甲烷、二氧化碳、水、硫化氢和氨等。在此过程中,不同微生物的代谢过程相互影响,相互制约,形成了复杂的生态系统。对高分子**物的厌氧过程的叙述,有助于我们了解这一过程的基本内容。
高分子**物的厌氧降解过程可以被分为四个阶段:水解阶段、发酵(或酸化)阶段、产乙酸阶段和产甲烷阶段。
水解阶段
水解可定义为复杂的非溶解性的聚合物被转化为简单的溶解性单体或二聚体的过程。
高分子**物因相对分子量巨大,不能透过,因此不可能为直接利用。它们在阶段被胞外酶分解为小分子。例如:纤维素被纤维素酶水解为纤维二糖与葡萄糖,淀粉被分解为麦芽糖和葡萄糖,蛋白质被蛋白质酶水解为短肽与氨基酸等。这些小分子的水解产物能够溶解于水并透过为所利用。水解过程通常较缓慢,因此被认为是含高分子**物或悬浮物废液厌氧降解的限速阶段。多种因素如温度、**物的组成、水解产物的浓度等可能影响水解的速度与水解的程度。水解速度的可由以下动力学方程加以描述:ρ=ρo/(1+Kh.T)
ρ ——可降解的非溶解性底物浓度(g/L)
ρo———非溶解性底物的初始浓度(g/L)
Kh——水解常数(d^-1)
T——停留时间(d)
发酵或酸化阶段
发酵可定义为**物化合物既作为电子受体也是电子供体的生物降解过程,在此过程中溶解性**物被转化为以挥发性脂肪酸为主的末端产物,因此这一过程也称为酸化。
在这一阶段,上述小分子的化合物发酵(即酸化菌)的细胞内转化为较为简单的化合物并分泌到细胞外。发酵绝大多数是严格,但通常有约1%的兼性存在于厌氧环境中,这些兼性能够起到保护像甲烷菌这样的严格免受氧的损害与抑制。这一阶段的主要产物有挥发性脂肪酸、醇类、乳酸、二氧化碳、氢气、氨、硫化氢等,产物的组成取决于厌氧降解的条件、底物种类和参与酸化的微生物种群。与此同时,酸化菌也利用部分物质合成新的细胞物质,因此,未酸化废水厌氧处理时产生更多的剩余污泥。
在厌氧降解过程中,酸化对酸的耐受力必须加以考虑。酸化过程pH下降到4时能可以进行。但是产甲烷过程pH值的范围在6.5~7.5之间,因此pH值的下降将会减少甲烷的生成和氢的消耗,并进一步引起酸化末端产物组成的改变。
优势介绍(厌氧池)
厌氧污水处理工艺的基建投资一般情况下比氧化沟和 SBR 工艺高,但随着规模的,氧化沟和 SBR 的基建费也成倍增加,而常规活性污泥法的投资则以较小的比例增加,两者的差距越来越小。当污水厂达到一定规模后,常规活性污泥法的投资比氧化沟与 SBR 还省,所以,污水厂规模越大,常规活性污泥法的优势越大。常规活性污泥法、A/O和A2/O法的主要缺点是处理单元多,操作管理复杂,特别是污泥厌氧消化要求高水平的管理,消化过程产生的沼气是可燃易爆气体,较要求操作,这些都增加了管理的难度。但由于大型污水厂背靠大城市,技术力量强,管理水平较高,能满足这种要求,因而常规活性污泥法的缺点不会成为限制使用的因素。
与污水的好氧生物处理工艺相比,污水的厌氧生物处理工艺具有以下主要优点:
①大量降低能耗,而且还可以回收生物能(沼气);
厌氧生物处理工艺中没有为微生物提供氧气的鼓风曝气装置,可以降低大量的能耗。在大量去除**物的同时,厌氧处理工艺还会伴有大量沼气产生。而沼气中的甲烷是一种可以燃烧的气体,具有很高的利用**,可以直接用于锅炉燃烧或发电;
②污泥产量很低;
由于污水中大部分**污染物在厌氧生物处理过程中被转化为沼气——甲烷和二氧化碳,而用于细胞合成的**物相对较少;同时,微生物增殖速率好氧工艺要比厌氧高很多,产酸菌的产率Y为0.15~0.34kgVSS/kgCOD,产甲烷菌的产率Y为0.03kgVSS/kgCOD左右,而好氧微生物的产率约为0.25~0.6kgVSS/kgCOD。
③厌氧可以对好氧微生物不能降解的一些**物进行降解或部分降解;因此,对于污水中含有难降解**物质时,利用厌氧工艺进行处理后的效果较好一些,或者也可以将厌氧工艺作作为提高污水可生化性预处理工艺,为后续好氧处理工艺处理效果提供基础。
潍坊鲁川环保设备有限公司
运转费用低:创新的工艺、优良的设计、的的生物填料,使整套农村污水处理系统运转,使每吨农村污水处理费用降至0.3元以下,农村污水处理设备。具有使用太阳能及风能的当地,可增配我公司的风景一体发电机组为农村污水处理设备供电,可使农村污水处理电费为零,农村污水处理设备。管理费用低:主动操控柜可依据农村污水液位全主动操控两台水泵、两台风机替换运转,当一台有问题时,另一台发动使设备连续运转;当农村污水断流时,风机能主动间歇运转,以维护生物膜的正常成长,农村污水处理设备。
潍坊鲁川环保设备有限公司是一家集科研、设计、生产、销售于一体的环保设备制造。 公司坐落于风景秀美、交捷、人文荟萃、美丽的世界风筝之都——山东省潍坊市。公司成立于2017年,注册资金200万元,公司致力于地埋式一体化污水处理设备、一体化污水提升泵站、气浮设备、生活污水处理设备等产品的研制、开发、制造和销售。