牌照字符识别方法
主要有基于模板匹配算法和基于人工神经网络算法。基于模板匹配算法首先将分割后的字符二值化并将其尺寸大小缩放为字符数据库中模板的大小,然后与所有的模板进行匹配,选择佳匹配作为结果。基于人工神经网络的算法有两种:一种是先对字符进行特征提取,然后用所获得特征来训练神经网络分配器;另一种方法是直接把图像输入网络,由网络自动实现特征提取直至识别出结果。
实际应用中,车牌识别系统的识别率还与牌照质量和拍摄质量密切相关。牌照质量会受到各种因素的影响,如生锈、污损、油漆剥落、字体褪色、牌照被遮挡、牌照倾斜、高亮反光、多牌照、**等等;实际拍摄过程也会受到环境亮度、拍摄方式、车辆速度等等因素的影响。这些影响因素不同程度上降低了车牌识别的识别率,也正是车牌识别系统的困难和挑战所在。为了提高识别率,除了不断地完善识别算法还应该想办法克服各种光照条件,使采集到的图像利于识别。
红外光路线是指利用反光和红外光的光学特性,用红外摄像机采集车辆灰度图像,由于红外特性,车辆图像上几乎只能看见,然后用黑白图像处理方法识别。950nm的红外照明装置可抓拍到很好的反光照图像。因红外光是不可见光,它不会对驾驶员产生视觉影响。另外,红外照明装置提供的是不变的光,所抓拍的图像都是一样的,不论是在中明亮的时候,还是在中暗的时候。的例外是在白天,有时会看到一些牌照周围的细节,这是因为晴朗天气时太阳光的外光波的影响。采用红外灯的缺点就是所捕获的照图像不是彩色的,不能获取整车图像,并且严重依赖反光材料。
车辆检测
车辆检测可以采用埋地线圈检测、红外检测、检测技术、视频检测等多种方式。采用视频检测可以避免破坏路面、不必附加外部检测设备、不需矫正触发位置、节省开支,而且更适合移动式、便携式应用的要求。
系统进行视频车辆检测,需要具备很高的处理速度并采用的算法,在基本不丢帧的情况下实现图像采集、处理。若处理速度慢,则导致丢帧,使系统无法检测到行驶速度较快的车辆,同时也难以保证在有利于识别的位置开始识别处理,影响系统识别率。因此,将视频车辆检测与牌照自动识别相结合具备一定的技术难度。
采用计算机视觉技术识别的流程通常都包括车辆图像采集,定位,字符分割,光学字符识别,输出识别结果5个步骤。车辆图像的采集方式决定了车牌识别的技术路线。国际ITS通行的两条主流技术路线是自然光和红外光图像采集识别。自然光和红外光不会对人体产生不良的心理影响,也不会对环境产生新的电子污染,属于绿色环保技术。
大连安宇嘉电子科技,是一家致力于弱电系统设计、安装、维护的企业。 公司自成立以来一直从事包括视频监控、远程监控、门禁系统、人行通道闸系统、停车场管理系统、水控系统、电梯控制系统、防盗报警系统、视频会议、公共广播、楼宇对讲、 电子显示屏等多项智能建筑弱电系统的工程设计、安装、维护、保养、维修等。应用领域包括:机关、银行、公共交通、体育场馆、学校、商场超市、小区、工厂、场所及公共建筑设施场所。公司建立了一支在安防领域具有深厚技术力量的施工队伍,同时拥有一批丰富知识的售后服务人员。经营理念:诚信、敬业、求实、创新;管理理念:以人为本、科学管理;服务理念:用户至上、信誉 ......