反渗透
反渗透又称逆渗透,一种以压力差为推动力,从溶液中分离出溶剂的膜分离操作。因为它和自然渗透的方向相反,故称反渗透。根据各种物料的不同渗透压,就可以使用大于渗透压的反渗透压力,即反渗透法,达到分离、提取、纯化和浓缩的目的。
中文名 反渗透 外文名 reverse osmosis 别 称 逆渗透 表达式 N=Kh(Δp-Δπ) 应用学科 物理化学 适用领域范围 海水、苦咸水的淡化;水的软化处理 机理模型 **吸附毛细孔模型等
目录
1 定义
2 基本原理
3 水处理应用
4 研究进展
定义
反渗透又称逆渗透,一种以压力差为推动力,从溶液中分离出溶剂的膜分离操作。对膜一侧的料液施加压力,当压力**过它的渗透压时,溶剂会逆着自然渗透的方向作反向渗透。从而在膜的低压侧得到透过的溶剂,即渗透液;高压侧得到浓缩的溶液,即浓缩液。若用反渗透处理海水,在膜的低压侧得到淡水,在高压侧得到卤水。
反渗透时,溶剂的渗透速率即液流能量N为:
式中Kh为水力渗透系数,它随温度升高稍有增大;Δp为膜两侧的静压差;Δπ为膜两侧溶液的渗透压差。
稀溶液的渗透压π为:
式中i为溶质分子电离生成的离子数;C为溶质的摩尔浓度;R为摩尔气体常数;T为**温度。
反渗透通常使用非对称膜和复合膜。反渗透所用的设备,主要是中空纤维式或卷式的膜分离设备。
反渗透膜能截留水中的各种无机离子、胶体物质和大分子溶质,从而**净制的水。也可用于大分子**物溶液的预浓缩。由于反渗透过程简单,能耗低,近20年来得到迅速发展。现已大规模应用于海水和苦咸水(见卤水)淡化、锅炉用水软化和废水处理,并与离子交换结合制取高纯水,其应用范围正在扩大,已开始用于乳品、果汁的浓缩以及生化和生物制剂的分离和浓缩方面。
反渗透技术通常用于海水、苦咸水的淡水;水的软化处理;废水处理以及食品、医药工业、化学工业的提纯、浓缩、分离等方面。此外,反渗透技术应用于预除盐处理也**较好的效果,能够使离子交换树脂的负荷减轻松90%以上,树脂的再生剂用量也可减少90%。因此,不仅节约费用,而且还有利于环境保护。反渗透技术还可用于除于水中的微粒、**物质、胶体物,对减轻离子交换树脂的污染,延长使用寿命都有着良好的作用。
渗透反渗透对比
渗透反渗透对比
基本原理编辑
把相同体积的稀溶液(如淡水)和浓液(如海水或盐水)分别置于一容器的两侧,中间用半透膜阻隔,稀溶液中的溶剂将自然的穿过半透膜,向浓溶液侧流动,浓溶液侧的液面会比稀溶液的液面高出一定高度,形成一个压力差,达到渗透平衡状态,此种压力差即为渗透压,渗透压的大小决定于浓液的种类,浓度和温度,与半透膜的性质无关。若在浓溶液侧施加一个大于渗透压的压力时,浓溶液中的溶剂会向稀溶液流动,此种溶剂的流动方向与原来渗透的方向相反,这一过程称为反渗透。
溶解-扩散模型
Lonsdale等人提出解释反渗透现象的溶解-扩散模型。他将反渗透的活性表面皮层看作为致密无孔的膜,并假设溶质和溶剂都能溶于均质的非多孔膜表面层内,各自在浓度或压力造成的化学势推动下扩散通过膜。溶解度的差异及溶质和溶剂在膜相中扩散性的差异影响着他们通过膜的能量大小。其具体过程分为:第一步,溶质和溶剂在膜的料液侧表面外吸附和溶解;第二步,溶质和溶剂之间没有相互作用,他们在各自化学位差的推动下以分子扩散方式通过反渗透膜的活性层;第三步,溶质和溶剂在膜的透过液侧表面解吸。
在以上溶质和溶剂透过膜的过程中,一般假设第一步、第三步进行的很快,此时透过速率取决于第二步,即溶质和溶剂在化学位差的推动下以分子扩散方式通过膜。由于膜的选择性,使气体混合物或液体混合物得以分离。而物质的渗透能力,不仅取决于扩散系数,并且决定于其在膜中的溶解度。
**吸附—毛细孔流理论
当液体中溶有不同种类物质时,其表面张力将发生不同的变化。例如水中溶有醇、酸、醛、脂等**物质,可使其表面张力减小,但溶入某些无机盐类,反而使其表面张力稍有增加,这是因为溶质的分散是不均匀的,即溶质在溶液表面层中的浓度和溶液内部浓度不同,这就是溶液的表面吸附现象。当水溶液与高分子多孔膜接触时,若膜的化学性质使膜对溶质负吸附,对水是**的正吸附,则在膜与溶液界面上将形成一层被膜吸附的一定厚度的纯水层。它在外压作用下,将通过膜表面的毛细孔,从而可获取纯水。
键理论
水在纤维素膜中的传递
水在纤维素膜中的传递
纤维素(一种半透膜材料)是一种具有高度有序矩阵结构的聚合物,它具有与水或醇等溶剂形成键的能力,如图所示。盐水中的水分子能与纤维素半透膜上的羰基形成键。在反渗透压力推动的作用下,以键结合进入纤维素膜的水分子能够由**个键位置断裂而转移到另一个位置形成另一个键。这些水分子通过一连串的形成键和断裂键而不断移位,直至离开膜的表皮层而进入多空性支撑层后,就很快地源源流出淡水。 [1]
机理模型
统一的“干闭湿开”反渗透机理模型,有几个经典模型:
1.**吸附毛细孔模型:弱点干态膜电镜下,没发现孔。湿态膜标本不是电镜的样品。
2.溶解扩散模型:不认为有孔。
3.干闭湿开模型:上个世纪80,90年代,解释1和2模型的统一的现代贴切的逆渗透机理模型。既“干闭湿开”反渗透模型,统一了两个经典的反渗透机制模型,细孔模型,溶解扩散模型。即
膜干时,膜孔收缩致密,孔隙闭合,电镜下看不到制成干态备镜检的干膜;
膜湿时,膜材料溶胀,膜的孔隙被溶剂溶胀,孔打开。合并就是“干闭湿开”脱盐模型。
水处理应用编辑
与其他传统分离工程相比,反渗透分离过程有其*特的优势:(1)压力是反渗透分离过程的主动力,不经过能量密集交换的相变,能耗低;(2)反渗透不需要大量的沉淀剂和吸附剂,运行成本低;(3)反渗透分离工程设计和操作简单,建设周期短;(4)反渗透净化效率高,环境友好。因此,反渗透技术在生活和工业水处理中已有广泛应用,如海水和苦咸水淡化、医用和工业用水的生产、纯水和**纯水的制备、工业废水处理、食品加工浓缩、气体分离等。
海水和苦咸水淡化
20世纪60年代以来,反渗透脱盐已成为一种获取饮用水的重要途径,是解决淡水资源紧缺的一种有效方法。目前,反渗透脱盐技术主要应用在两个方面:海水淡化和苦咸水脱盐。
全世界海水淡化装置中约有30%是利用反渗透技术实现的,通过反渗透膜可除去海水中99%以上的盐离子, [2] 得到可饮用的淡水。以色列的反渗透海水淡化技术比较良好,2005年阿什克伦建造了当时世界上大的反渗透海水淡化装置,产水量为3.3×105m3·d-1,占到以色列全部水需求量的15%,产水成本约为0.53美元·m-3。我国大的反渗透海水淡化站位于大连市长海县。
苦咸水在我国北方地区分布较为广泛,含盐离子较多,可通过反渗透技术进行除盐淡化处理,达到饮用水标准。马莲河流域**工程利用马莲河上游环江苦咸水资源,采用反渗透膜技术,建立1000m3·d-1苦咸水淡化工程,出水水质达到国家生活饮用水卫生标准,有效解决了环县城区5万居民饮水问题。何绪文、姚永毅、孙魏等均对苦咸水进行过反渗透处理的实验研究,系统脱盐率>95%,出水水质**国家饮用水标准。
海水和苦咸水淡化是反渗透技术的传统应用领域,目前存在的问题仍然是操作压力偏高,能耗较大,另外海水中的Cl-对反渗透膜也有较大的污染,阻碍了反渗透技术在该领域的进一步推广。目前,低压、低能耗、抗污染、抗氧化的反渗透膜正在积极的研发之中,以便从根本上解决现在存在的问题。
纯水和**纯水的制备
反渗透+混床水处理技术改进了原来的全离子交换制水工艺,运行期间,产水增加,水质改善,大幅度降低了制水成本。此外,许多科研人员均对反渗透+电去离子法制取纯水进行了实验研究,达到了预期结果,证实了反渗透+电去离子法制取高纯水的可行性。通过控制反渗透的级数可制取不同纯度脱盐水。随着反渗透级数的增加,脱盐水的纯度提高,但是出水量减少,水利用率降低,因此,反渗透装置连用一般不会**过二级,通常将反渗透与电去离子技术联用,不仅克服了反渗透出水不能彻底除盐的不足,还可以提高电去离子装置的进水水质,防止电去离子设备损坏,提高整体净水效果。
工业废水处理
工业废水处理是除脱盐和纯水的制备领域外,反渗透技术应用多的一个领域。工业废水处理具有降低生产成本,保护环境,实现废水资源化等多重意义。由于反渗透膜对进水要求较高,运用反渗透技术对废水进行深度处理时,往往还要结合沉降、混凝、微滤、超滤、活性炭吸收、pH调节等预处理工艺。
重金属废水处理
反渗透技术在重金属废水处理中应用较早,国内外均对此进行了大量的研究。早在20世纪70年代,反渗透技术已经在电镀废水处理中有所应用,主要是大规模用于镀镍、铬、锌漂洗水和混合重金属废水的处理。
膜分离技术浓缩电镀镍漂洗水,镍离子的截留率大于99%,经一级纳滤和两级反渗透浓缩后,浓缩液中镍离子浓度达到50g·L-1,透过液可经处理后再次回用。张连凯对印制电路板加工酸洗车间产生的重金属废水调节pH至中性后采用超滤+反渗透工艺进行中试,反渗透系统对Cu2+和溶解性总固体的去除率分别为99.9%和98.9%。
印染废水处理
印染纺织废水不仅色度高、水量大,而且成分十分复杂,废水中含有染料、浆料、油剂、助剂、酸碱、纤维杂质以及无机盐等,染料结构中还含有很多较大生物毒性的物质,如和胺类化合物以及铜、铬、锌、砷等重金属元素,如不经处理直接排放,必将对环境造成严重污染。
超滤+反渗透
反渗透原理
当把相同体积的稀溶液和浓液分别置于一容器的两侧,中间用半透膜阻隔,稀溶液中的溶剂将自然的穿过半透膜,向浓溶液侧流动,浓溶液侧的液面会比稀溶液的液面高出一定高度,形成一个压力差,达到渗透平衡状态,此种压力差即为渗透压。若在浓溶液侧施加一个大于渗透压的压力时,浓溶液中的溶剂会向稀溶液流动,此种溶剂的流动方向与原来渗透的方向相反,这一过程称为反渗透。
中文名 反渗透原理 外文名 Reverse Osmosis 主要指标 脱盐率和透盐率,产水量,回收率 影响因素 进水压力,温度,PH值,盐浓度 过 程 水分自然渗透过程的反向过程 物 质 反渗透膜
目录
1 起源
2 工作原理
3 技术基础
4 主要指标
5 影响因素
6 机理
? 概述
? 经典模型
7 用途
起源
早使用于美国太空人将尿液回收为纯水使用。医学界还以反渗透法的技术用来洗肾(血液透析)。反渗透膜可以将重金属、农药、细菌、病毒、杂质等彻底分离。整个工作原理均采用物理法,不添加任何杀菌剂和化学物质,所以不会发生化学变相。并且反渗透膜并不分离溶解氧,所以通过此法生产得出的纯水是活水,喝起来清甜可口。
反渗透,英文为Reverse Osmosis,它所描绘的是一个自然界中水分自然渗透过程的反向过程。早在1950年美国科学家DR.S.Sourirajan有一回无意中发现海鸥在海上飞行时从海面啜起一大口海水,隔了几秒后吐出一小口的海水。他由此而产生疑问:陆地上由肺呼吸的动物是**无法饮用高盐份的海水,那为什么海鸥就可以饮用海水呢?这位科学家把海鸥带回了实验室,经过解剖发现在海鸥嗉囊位置有一层薄膜,该薄膜构造非常精密。海鸥正是利用了这薄膜把海水过滤为可饮用的淡水,而含有杂质及高浓缩盐份的海水则吐出嘴外。这就是以后逆渗透法(Reverse Osmosis 简称 R.O)的基本理论架构 。
工作原理
对透过的物质具有选择性的薄膜称为半透膜,一般将只能透过溶剂而不能透过溶质的薄膜称之为理想半透膜。当把相同体积的稀溶液(例如淡水)和浓溶液(例如盐水)分别置于半透膜的两侧时,稀溶液中的溶剂将自然穿过半透膜而自发地向浓溶液一侧流动,这一现象称为渗透。当渗透达到平衡时,浓溶液侧的液面会比稀溶液的液面高出一定高度,即形成一个压差,此压差即为渗透压。渗透压的大小取决于溶液的固有性质,即与浓溶液的种类、浓度和温度有关而与半透膜的性质无关。若在浓溶液一侧施加一个大于渗透压的压力时,溶剂的流动方向将与原来的渗透方向相反,开始从浓溶液向稀溶液一侧流动,这一过程称为反渗透。 反渗透是渗透的一种反向迁移运动,是一种在压力驱动下,借助于半透膜的选择截留作用将溶液中的溶质与溶剂分开的分离方法,它已广泛应用于各种液体的提纯与浓缩,其中普遍的应用实例便是在水处理工艺中,用反渗透技术将原水中的无机离子、细菌、病毒、**物及胶体等杂质去除,以获得高质量的纯净水。
技术基础编辑
渗透膜早已存在于自然界中,但直到1748年,Nollet发现水能自然的扩散到装有的猪膀胱内,人类才发现了渗透现象。
自然的渗透过程中,溶剂通过渗透膜从低浓度向高浓度部分扩散;而反渗透是指在外界压力作用下,浓溶液中的溶剂透过膜向稀溶液中扩散,具有这种功能的半透膜称为反渗透膜,也称RO(Reverse Osmoses)膜。
世界上从反渗透过程的传质机理及模型来说,主要有三种学说:
1、溶解-扩散模型
Lonsdale等人提出解释反渗透现象的溶解-扩散模型。他将反渗透的活性表面皮层看作为致密无孔的膜,并假设溶质和溶剂都能溶于均质的非多孔膜表面层内,各自在浓度或压力造成的化学势推动下扩散通过膜。溶解度的差异及溶质和溶剂在膜相中扩散性的差异影响着他们通过膜的能量大小。其具体过程分为:第一步,溶质和溶剂在膜的料液侧表面外吸附和溶解;第二步,溶质和溶剂之间没有相互作用,他们在各自化学位差的推动下以分子扩散方式通过反渗透膜的活性层;第三步,溶质和溶剂在膜的透过液侧表面解吸。
在以上溶质和溶剂透过膜的过程中,一般假设第一步、第三步进行的很快,此时透过速率取决于第二步,即溶质和溶剂在化学位差的推动下以分子扩散方式通过膜。由于膜的选择性,使气体混合物或液体混合物得以分离。而物质的渗透能力,不仅取决于扩散系数,并且决定于其在膜中的溶解度。
溶剂和溶质在膜中的扩散服从Fick定律,这种模型认为溶剂和溶质都可能溶于膜表面,因此物质的渗透能力不仅取决于扩散系数,而且取决于其在膜中的溶解度,溶质的扩散系数比水分子的扩散系数要小得多,因而透过膜的水分子数量就比通过扩散而透过去的溶质数量更多。
2、 **吸附—毛细孔流理论
当液体中溶有不同种类物质时,其表面张力将发生不同的变化。例如水中溶有醇、酸、醛、脂等**物质,可使其表面张力减小,但溶入某些无机盐类,反而使其表面张力稍有增加,这是因为溶质的分散是不均匀的,即溶质在溶液表面层中的浓度和溶液内部浓度不同,这就是溶液的表面吸附现象。当水溶液与高分子多孔膜接触时,若膜的化学性质使膜对溶质负吸附,对水是**的正吸附,则在膜与溶液界面上将形成一层被膜吸附的一定厚度的纯水层。它在外压作用下,将通过膜表面的毛细孔,从而可获取纯水。
3、 键理论
在纤维素中,由于键和范德华力的作用,膜中存在晶相区域和非晶相区域两部分。大分子之间存在牢固结合并平行排列的为晶相区域,而大分子之间完全无序的为非晶相区域,水和溶质不能进入晶相区域。在接近纤维素分子的地方,水与纤维素羰基上的氧原子会形成键并构成所谓的结合水。当纤维素吸附了**层水分子后,会引起水分子熵值的较大下降,形成类似于冰的结构。在非晶相区域较大的孔空间里,结合水的占有率很低,在孔的存在普通结构的水,不能与纤维素膜形成键的离子或分子则进入结合水,并以有序扩散方式迁移,通过不断的改变和纤维素形成键的位置来通过膜。
在压力作用下,溶液中的水分子和纤维素的活化点——羰基上的氧原子形成键,而原来水分子形成的键被断开,水分子解离出来并随之移到下一个活化点并形成新的键,于是通过一连串的键形成与断开,使水分子离开膜表面的致密活性层而进入膜的多孔层。由于多孔层含有大量的毛细管水,水分子能够畅通流出膜外 。
主要指标
1、脱盐率和透盐率
脱盐率——通过反渗透膜从系统进水中去除可溶性杂质浓度的百分比。
透盐率——进水中可溶性杂质透过膜的百分比。
脱盐率=(1–产水含盐量/进水含盐量)×**
透盐率=**–脱盐率
膜元件的脱盐率在其制造成形时就已确定,脱盐率的高低取决于膜元件表面**薄脱盐层的致密度,脱盐层越致密脱盐率越高,同时产水量越低。反渗透对不同物质的脱盐率主要由物质的结构和分子量决定,对高价离子及复杂单价离子的脱盐率可以**过99%,对单价离子如:离子、离子、氯离子的脱盐率稍低,但也**过了98%;对分子量大于100的**物脱除率也可过到98%,但对分子量小于100的**物脱除率较低。
2、产水量(水通量)
产水量(水通量)——指反渗透系统的产能,即单位时间内透过膜水量,通常用吨/小时或加仑/天来表示。
渗透流率——渗透流率也是表示反渗透膜元件产水量的重要指标。指单位膜面积上透过液的流率,通常用加仑每平方英尺每天(GFD)表示。过高的渗透流率将导致垂直于膜表面的水流速加快,加剧膜污染。
3、回收率
回收率——指膜系统中给水转化成为产水或透过液的百分比。膜系统的回收率在设计时就已经确定,是基于预设的进水水质而定的。
回收率=(产水流量/进水流量)×**
反渗透水处理设备的使用相当程度地延续了传统离子交换设备的再生周期,减少了酸碱的使用量及废酸碱液的排放量,便于节约水及改变环境保护。下面就给大家讲解一下它的步骤吧。
反渗透水处理设备原则上应分段清洗,清洗液流动方向与运行方向相同。但当污染物比较轻时,可多段一起进行清洗。
单段清洗分以下步骤:
1.混合清洗液;
2.用清洗泵低流量将清洗液以低流速、低压力打至反渗透系统,并将原水排走,以防清洗液稀释;
3.维持反渗透装置恒定温度,用清洗泵将清洗液在系统中循环;
4.清洗泵进行浸泡,通常lh就可,污染较严重的反渗透膜可进行2h--4h浸泡清洗;
5.用清洗泵大流量打清洗液30一60min,使反渗透膜上被洗掉的污染物随高流速水冲走;
6.用清水将清洗液冲去。此外,用酸清洗时应测pH值,当pH值上升0.5以上时应增加酸量。
反渗透水处理 !
反渗透是一种借助于选择透过(半透过)性膜的功能以压力为推动力的膜分离技术。
目录
1 定义
2 工作原理
3 反渗透作用
4 下降原因
5 工艺原理
6 设备用途
7 应用领域
定义
反渗透是一种借助于选择透过(半透过)性膜的功能以压力为推动力的膜分离技术,当系统中所加的压力大于进水溶液渗透压时,水分子不断地透过膜,经过产水流道流入中心管,然后在一端流出水中的杂质,如离子、**物、细菌、病毒等,被截留在膜的进水侧,然后在浓水出水端流出,从而达到分离净化目的。
工作原理
反渗透是精密的膜法液体分离技术,在进水(浓溶液)侧施加操作压力以克服自然渗透压,当**自然渗透压的操作压力离加于浓溶液侧时水分子自然渗透的流动方向就会逆转,进水(浓溶液)中的水分子部份通过反渗透膜成为稀溶液侧的净化产水;反渗透设备能阻挡所有溶解性盐及分子量大于100的**物,但允许水分子透过,反渗透复合膜脱盐率一般大于98%,它们广泛用于工业纯水及电子**纯水制备,饮用纯净水生产,锅炉给水等过程,在离子交换前使用反渗透设备可大幅度降底操作用水和废水的排放量。
反渗透作用
反渗透是目前过滤精度高的膜分离技术。过滤精度达到0.0001um。过滤了自来水中的所有物质,没有矿物质和微量元素,这种水是可以直接饮用的。水中的杂质如可溶性固体、**物、胶体物质及细菌等则被反渗透膜截留,在截流液中浓缩并被去除。一级反渗透可去除原水中97%以上的溶解性固体。
反渗透原理图
反渗透原理图
反渗透膜工作原理是将纯水与含有溶质的溶液用一种只能通过水的半透膜隔开,此时,纯水侧的水就自发的透过半透膜,进入溶液一侧,溶液侧的水面升高,这种现象就是渗透。当液面升高至一定高度时,膜两侧压力达到平衡,溶液侧的液面不再升高,这时,膜两侧有一个压力差,称为渗透压。如果给溶液侧加上一个大于渗透压的压力,溶液中的水分子就会被挤压到纯水一侧,这个过程正好与渗透相反,我们称之为反渗透。我们可以从反渗透的过程看到,由于压力的作用,溶液中的水分子进入纯水中,纯水量增加,而溶液本身被浓缩。反渗透除盐原理,就是施以比自然渗透压较大的压力,使渗透向相反方向进行,把原水中的水分子压到膜的另一边,从而达到除去水中盐分的目的。这就是反渗透膜除盐原理。
下降原因
反渗透膜的性能下降主要原因是由于膜表面受到了污染,如表面结垢,膜面堵塞;或是膜本身的物理化学变化而引起的。物理变化主要是由于压实效应引起膜的透水率下降;化学变化主要是由于PH值的波动而引起的,如使纤维素膜水解;游离氯也会使芳香聚酰胺膜性能恶化。反渗透膜污染堵塞的主要原因是由于膜面沉积和微生物的滋长而引起的。其中微生物不仅堵塞膜,并对纤维素有侵蚀损害作用。因此,在膜内必须保持一定的余氯量,但是余氯太高,又会引起膜性能下降,故在纤素膜前保持余氯0.1~0.5mg/L,而在芳香聚酰胺膜前余氯要小于0.1mg/L。
工艺原理
反渗透是渗透的一种反向迁移运动,是一种在压力驱动下借助于半透膜的选择截留作用将溶液中的溶质与溶剂分开的分离方法,其孔径大约在5~10A。它已广泛用于各种液体的提纯与浓缩,其中普遍的应用实例便是在水处理工艺中,用反渗透技术可将原水中的无机离子、细菌、病毒、**物及胶体等杂质去除,以获得高质量的纯净水。目前应用广泛的是卷式聚酰胺复合膜,其水通量和脱除率会受压力、温度、回收率、进水含盐量和PH值等的影响。
设备用途
反渗透水处理设备主要有以下几方面用途:
制取电子工业生产如单晶硅半导体集成电路块,显像管,玻壳,液晶显示器等制造工业用纯水、**纯水。
医药行业用水:制药、制剂工艺用水,医疗血液透析、生化分析、输液等。
制取热力、火力发电锅炉,厂矿企业中、低压锅炉给水所需软化水、除盐纯水。
制取饮料行业的饮用纯净水、蒸馏水、**水、矿泉水、矿化水、酒类生产白酒勾兑用纯水、啤酒糖化投料用水及纯生啤酒过滤等。
宾馆、楼宇、社区优质供水网络系统及游泳池水质净化。
制取电镀工艺用去离子水、电池(蓄电池)生产工艺的纯水,汽车、家用电器、建材产品表面涂装、清洗纯水,镀膜玻璃用纯水,纺织印染工艺所需的除硬盐水。
石油化工如化工反应冷却、化学药剂、化肥及精细化工、化妆品制造过程用工艺纯水。
应用领域
( 1 )电力工业:锅炉补给水、冷却水坝;
( 2 )电子工业:半导体工业**纯水、集成电路清洗用水、配方用水;
( 3 )食品工业:配方用水、生产用水;
( 4 )制药行业:工艺用水、制剂用水、洗涤用水、注射用水、无菌水制备;
( 5 )饮料工业:配方用水、生产用水、洗涤用水;
( 6 )化学工业:生产用水、废水处理;
( 7 )饮水工程:**纯水制备、饮用水净化;
( 8 )石油化工:油田注入水、石化废水深度处理;
( 9 )海水淡化:海岛地区、沿海缺水地区、船舶、海水油田等生产生活用水;
( 10 )环保领域:电镀漂洗水中贵重金属、水的回收,实现零排放或微排放。
梁山鑫泰二手设备购销部出售【兼回收】化工,制,饲料。食品设备调剂。 经营化工设备包括,分离。干燥,储存,过滤,反应。等整套生产线。 【二手分离机】,碟片分离机,二手管式分离机,二手淀粉分离机。 二手酵母分离机。乳品分离机。重油分离机,等国产进口分离设备。 【二手离心机】,二手卧式离心机,二手卧式螺旋沉降卸料离心机, 二手三足下卸料离心机,二手平板下卸料离心机,二手单机活塞推料离心机, 二手双级活塞推料离心机,二手吊袋离心机,二手上旋离心机,二手卧式螺旋过滤离心机。 【二手干燥机】二手闪蒸干燥机,二手真空回转双锥干燥机,二手震动流化床干燥机, 二手真空耙式干燥机,滚筒刮板干燥机,二手热风炉,二手制真空冷冻干燥剂。 【二手压滤机】二手板框压滤机,二手箱式压滤机,二手隔膜压滤机,二手余涂过滤机 二手叶片过滤机等。 【二手反应釜】二手搪瓷反应釜。不锈钢反应釜、 【储罐】,不锈钢储罐,不锈钢搅拌罐,加工定制不锈钢罐。 【二手饲料设备】二手饲料单机,整套鸡鸭鱼、水产饲料生产线、 【二手制设备】医中间体,针剂设备。 【二手锅炉】二手蒸汽锅炉