什么是无线传感器网络 无线传感器网络作为计算、通信和传感器三项技术相结合的产物,是一种全新的信息获取和处理技术。由于近来微型制造的技术、通讯技术及电池技术的改进,促使微小的传感器可具有感应、无线通讯及处理信息的能力。此类传感器不但能够感应及侦测环境的目标物及改变,并且可处理收集到的数据,并将处理过后的资料以无线传输的方式送到数据收集中心或基地台。这些微型传感器通常由传感部件、数据处理部件和通信部件组成,随机分布的集成有传感器、数据处理单元和通信模块的微小节点通过自组织的方式构成网络。借助于节点中内置的形式多样的传感器测量所在周边环境中的热、红外、声纳、雷达和地震波信号,从而探测包括温度、湿度、噪声、光强度、压力、土壤成分、移动物体的大小、速度和方向等众多我们感兴趣的物质现象。在通信方式上,虽然可以采用有线、无线、红外和光等多种形式,但一般认为短距离的无线低功率通信技术较适合传感器网络使用,一般称作无线传感器网络。 无线传感器网络的应用 无线传感器网络节点的微处理能力和无线通信能力使无线传感器网络有广阔的应用前景,以下分为五大类加以描 述其应用及潜力: a、军事应用 b、生物环境监测 c、健康应用 d、家庭应用 e、工业控制和监测 无线传感器网络体系结构 无线传感器网络体系结构由三个主要部分组成:传感节点,终端节点( Sink)和观察对象。传感节点散布在观察区域内采集与观察对象相关的数据,并将协同处理后的数据传送到Sink。Sink可以通过Internet或通信卫星实现传感器网络与任务管理节点通信。 网络的自动配置和自动康复和维持系统能量有效性 无线传感器网络被布置在**的环境中时,更换能源几乎不可能,为了节约能源,**功率要尽可能小,传输距离要短,节点间通信需要中间节点作为中继。在地震救灾或者是无人*行器中,网络的自动配置和自动康复功能显得异常重要,而大规模的多跳无线传感器网络系统的可测量性(scalability)也是一个关键问题。实现可测量性的一种方法是“分而治之(divide and conquer)”,或者说是分层控制(hierarchical),即用某种簇标准将网络节点分成簇组(clusters),在每个簇中选出一个作为簇头(leader),它在比较高的层次上代表本簇;同样的机制也应用到簇头中,使之形成一个层次,这个层次中,每个级别应用当地控制(local control)去实现某个全局目标。大多数无线网络中的分类思想认为网络与地理位置无关,分类的标准是簇里的节点数量和簇间的逻辑直径(相对于地理直径而言)。但是,当簇头(cluster leader)和簇内其它节点间的链路很长,相邻簇间地理位置交迭很大,且不同的簇间路由消息载荷(routing traffic load)不平衡时,一个非簇头(non-leader)节点和它的簇头节点之间通过它们之间仅有的长链路通信将要消耗更多的能量,并且相邻簇间的并行通信冲突频发,簇间能量消耗不平衡,由此带来的结果是网络的寿命和通信质量与有效性都大幅减小。因此,为了节约能量和改善通信质量和有效性,在设计簇算法时,簇的地理半径应该考虑。文献[10]提出,在传感器节点内用一种简单的细胞聚类结构去构成路由协议,这样可以维持一种可测量的能量有效的系统,其关键的问题是使这种细胞簇结构具有自动康复性。作者针对大规模多跳传感器网络的自动配置和自动康复提出了一种分布式算法,这种算法可以保证网络节点在二维空间里自动配置成细胞簇结构,其细胞单元有紧凑的地理半径,细胞单元之间的交叠也很小。这种结构在各种扰动下是自动康复的,比如节点加入、离开、死亡、移动、被敌方捕获等。文献[11]给出了一种针对簇的分布式算法LEACH,它是通过全局上重复簇操作来处理扰动的,但这种算法既不能保证系统中簇的定位也不能保证簇的数量。文献[12]给出了另外一种簇算法,它仅考虑了簇的逻辑半径,而不考虑地理半径,当簇间存在比较大的交迭时,这种方法会降低无线传输的有效性。另外,它的康复不在本地处理,而是依赖于消息在整个系统中的多次循环。文献[13]中给 出了一种基于访问的簇算法,这种算法注重簇的稳定性,不考虑簇的大小,要求每个节点都有**定位系统(GPS)的支持。 统功耗问题 无线传感器网络应用于特殊场合时,电源不可更换,因此功耗问题显得至关重要。 在系统的功耗模型中,我们较关心的是: (1) 微控制器的操作模式(休眠模式、操作模式、,潜在的减慢时钟速率等),无线**的工作模式(休眠、空闲、接收、**等); (2)在每种模式中,每个功能块的功耗量,及它与哪些参数有关; (3)在**功率受限的情况下,**功率和系统功耗的映射关系; (4)从一种操作模式转换到另外一种操作模式(假设可以直接转换)的转换时间及其功耗; (5)无线调制解调器的接收灵敏度和较大输出功率; (6)附加的品质因数(如****的温漂和频稳度、接收信号场强指示(RSSI)信号的标准等)。 基于以上考虑,文献[14]提出了一种自组织低功耗网络的协议i-Beans,并具体说明了此网络的功耗。比如,用一个220mAh的小纽扣电池供电,网络的平均消耗电流是100μ;A,取样率是每秒1次,则电池可以持续80天;如果抽样率是每两分钟一次,平均消耗电流降到1.92μ;A,则电池寿命可以延长到13.1年。 为了克服远程无线传感器网络面临的电池工作时间短的问题,美国Millennial Net公司已经将其i-Bean无线技术与来自新兴公司Ferro Solutions的“能量获得(energy harvesting)”技术结合在一起,双方较近展示了一个靠感应振荡能量转换器工作的i-Bean无线**机。这种转换器能由在50mg至100mg力作用下的28Hz至30Hz振荡产生1.2mV至3.6mV的电压,并允许在30m距离上以115Kb/s速率发送数据(无电池)。该公司还与其他公司合作开发太阳能电池板来给无线传感器供电。 在能量优化研究方面,西安交通大学的黄进宏等在文献[15]中提出了一种基于能量优化的无线传感网络自适应组织结构和协议ALEP。与传统的无线微传感器网络协议相比,ALEP较加充分地考虑到实际应用。它将一种高效能量控制算法引入组网协议,提高了网络的能量利用率,显着延长了无线网络的生命周期,增强了网络的健壮性。通过对ALEP协议进行OPNET仿真,结果显示该协议与传统模式的无线微传感器网络协议相比,在传送相同的数据量的条件下有较高效的能量特性和信息传输特性。 网络安全协议问题 传感器网络受到的安全威胁和移动ad hoc网络所受到的安全威胁不同,所以现有的网络安全机制不适合此领域,需要开发针对无线传感器网络的专门协议。 一种思想是从维护路由安全的角度出发,寻找尽可能安全的路由以保证网络的安全。文献[1]指出,如果路由协议被破坏导致传送的消息被篡改,那么对于应用层上的数据包来说没有任何的安全性可言。文中介绍了一种方法叫“有安全意识的路由”(SAR),其思想是找出真实值和节点之间的关系,然后利用这些真实值去生成安全的路由。该方法解决了两个问题,即如何保证数据在安全路径中传送和路由协议中的信息安全性。文中假设两个军官利用按需距离矢量路由(Ad Hoc On Demand Distance Vector Routing,AODV)协议通过ad hoc网络来通信,他们的通信基于Bell-La安全模型(PadulaBell-La Padula Confidentiality Model) [2],这种模型中,当节点的安全等级达不到要求时,其就会自动的从路由选择中退出以保证整个网络的路由安全。文献[3]指出,可以通过多径路由算法改善系统的稳健性(robustness),数据包通过路由选择算法在多径路径中向前传送,在接收端内通过前向纠错技术得到重建。无线传感器网络中传感器的数量众多并且功能有限,移动ad hoc网络中的路由方案不能直接应用到无线传感器网络中,所以该文给出了一种网状多径路由协议。此协议中应用了选择性向前传送数据包和端到端的前向纠错解码技术,配合适合传感器网络的网状多径搜索机制,能减少信号开支(**ing overhead),简化节点数据库,增大系统的吞吐量,相对数据包复制或者有限泛洪法来说,这种方法消耗较少的系统资源(比如信道带宽和电能)。 另一种思想是把着重点放在安全协议方面,在此领域也出现了大量的研究成果。在文献[4]中,作者假定传感器网络的任务是为**政要人员提供安全保护的,提供一个安全解决方案将为解决这类安全问题带来一个普适的模型。在具体的技术实现上,先假定基站总是正常工作的,并且总是安全的,满足必要的计算速度、存储器容量,基站功率满足加密和路由的要求;通信模式是点到点,通过端到端的加密保证了数据传输的安全性;射频层总是正常工作。基于以上前提,典型的安全问题可以总结为: (1)信息被非法用户截获; (2)一个节点遭破坏; (3)识别伪节点; (4)如何向已有传感器网络添加合法的节点。 位移传感器 位移传感器又称为线性传感器,传感器的作用是把各种被测物理量转换为电量。它分为电感式位移传感器,电容式位移传感器,光电式位移传感器,超声波式位移传感器,霍尔式位移传感器。有许多物理量(例如压力、流量、加速度等)在转换过程中常常需要先变换为位移,然后再将位移变换成电量。因此位移传感器是一类重要的基本传感器。在生产过程中,位移的测量一般分为测量实物尺寸和机械位移两种。按被测变量变换的形式不同,位移传感器可分为模拟式和数字式两种。模拟式又可分为物性型(如自发电式)和结构型两种。常用位移传感器以模拟式结构型居多,包括电位器式位移传感器、电感式位移传感器、自整角机、电容式位移传感器、电涡流式位移传感器、霍尔式位移传感器等。相较于模拟式位移传感器,数字式位移传感器的一个重要优点是便于将信号直接送入计算机系统。这种传感器发展迅速,应用日益广泛。无线传感器网络的主要用途虽然无线传感器网络的大规模商业应用,由于技术等方面的制约还有待时日,但是较近几年,随着计算成本的下降以及微处理器体积越来越小,已经为数不少的无线传感器网络开始投入使用。目前无线传感器网络的应用主要集中在以下领域: 环境的监测和保护随着人们对于环境问题的关注程度越来越高,需要采集的环境数据也越来越多,无线传感器网络的出现为随机性的研究数据获取提供了便利,并且还可以避免传统数据收集方式给环境带来的侵入式破坏。比如,英特尔研究实验室研究人员曾经将32个小型传感器连进互联网,以读出缅因州“大鸭岛”上的气候,用来评价一种海燕巢的条件。无线传感器网络还可以跟踪候鸟和昆虫的迁移,研究环境变化对农作物的影响,监测海洋、大气和土壤的成分等。此外,它也可以应用在精细农业中,来监测农作物中的害虫、土壤的酸碱度和施肥状况等。 医疗护理无线传感器网络在医疗研究、护理领域也可以大展身手。罗彻斯特大学的科学家使用无线传感器创建了一个智能医疗房间,使用微尘来测量居住者的重要征兆(血压、脉搏和呼吸)、睡觉姿势以及每天24小时的活动状况。英特尔公司也推出了无线传感器网络的家庭护理技术。该技术是做为探讨应对老龄化社会的技术项目Center for Aging Services Technologies(CAST)的一个环节开发的。该系统通过在鞋、家具以家用电器等家中道具和设备中嵌入半导体传感器,帮助老龄人士、阿尔茨海默氏病患者以及残障人士的家庭生活。利用无线通信将各传感器联网可高效传递必要的信息从而方便接受护理。而且还可以减轻护理人员的负担。英特尔主管预防性健康保险研究的董事Eric Dishman称,“在开发家庭用护理技术方面,无线传感器网络是非常有前途的领域”。 军事领域由于无线传感器网络具有密集型、随机分布的特点,使其非常适合应用于恶劣的战场环境中,使其非常适合应用于恶劣的战场环境中,包括侦察敌情、监控兵力、装备和物资,判断生物化学攻击等多方面用途。美国*部远景计划研究局已投资几千万美元,帮助大学进行“智能尘埃”传感器技术的研发。哈伯研究公司总裁阿尔门丁格预测:智能尘埃式传感器及有关的技术销售从2004年的1000万美元增加到2013年的几十亿美元。 目标跟踪DARPA支持的Scnsor IT项目探索如何将WSN技术应用于军事领域,实现所谓“**视距”战场监测。UCB的教授主持的Sensor Web是Sensor IT的一个子项目.原理性地验证了应用WSN进行战场目标跟踪的技术可行性,翼下携带WSN节点的无人机(UAV)飞到目标区域后抛下节点,较终随机布撤落在被监测区域,利用安装在节点上的地震波传感器可以探测到外部日标,如坦克、装甲车等,并根据信号的强弱估算距离,综合多个节点的观测数据,较终定位目标,并绘制出其移动的轨迹。虽然该演示系统在精度等方面还远达不到装备*用于实战的要求,这种战场侦察模式目前还没有真正应用于实战,但随着美国*部将其武器系统研制的主要技术目标从精确制导转向目标感知与定位,相信WSN提供的这种新颖的战场侦察模式会受到军方的关注. 其他用途无线传感器网络还被应用于其他一些领域。比如一些危险的工业环境如井矿、核电厂等,工作人员可以通过它来实施安全监测。也可以用在交通领域作为车辆监控的有力工具。此外和还可以在工业自动化生产线等诸多领域,英特尔正在对工厂中的一个无线网络进行测试,该网络由40台机器上的210个传感器组成,这样组成的监控系统将可以大大改善工厂的运作条件。它可以大幅降低检查设备的成本,同时由于可以提前发现问题,因此将能够缩短停机时间,提高效率,并延长设备的使用时间。尽管无线传感器技术目前仍处于初步应用阶段,但已经展示出了非凡的应用**,相信随着相关技术的发展和推进,一定会得到较大的应用。-/gjjici/-
上海豫淞电子科技有限公司,简称豫淞科技(YUSONG TEST)。豫淞科技有限公司是一家致力于工业物联网系统解决方案的供应商,产品涉及工业测量,工业安全防护,自动化检测,物流系统解决方案四块领域。 公司是以技术研发为基础,服务客户为**,以完善自身汇报社会为目的科技型企业,致力于成为行业内无线智能企业,为客户提供智能传感器, 无线加速度传感器,无线振动传感器,无线倾角传感器,无线温度传感器,无线压力传感器,无线力传感器,无线数据采集端,综合性智能传输基站,无线传感解决方案。 围绕客户需求,以智能化,微型化,网络化为方向的技术创新,提供高品质化系统,为客户创造大**。 运用数字信息技术,打造工业物联网系统,让物质文明充斥每个角落。 豫淞科技坚持以客户至上的原则,致力成为是成为设备状态检测、故障诊断系统解决方案企业