*了解产品服务请拨打咨询电话或登录公司网站查询
龙兴物联是一家专注于工业物联网和大数据台的技术研发型公司,主营业务为云台定制开发、网关定制开发(含网关)、采集终端定制开发。
公司拥有的大数据、软件架构、嵌入式、硬件组成的研发团队,面向工业领域、智能制造、自动化、电力、石化、新能源、、特种行业领域提供高标准系统级工业物联网解决方案及数据分析服务。
我们的研发团队沉稳而不失朝气,有经验也有。**研发人员均有10多年项目开发履历,项目经验丰富。公司后续会与多所高校进行合作,保证公司人才供应。
工业互联网平台几点发展建议
(一)充分利用现有成熟技术,快速构建平台平台构建所需的通用 IT功能已有大量成熟商业化方案和开源工具,平台企业应加强对现有技术的集成与使用。利用各类开源PaaS、容器、大数据处理、人工智能等技术工具,搭建平台基础框架及数据管理分析能力。向下集成工业网关、中间件、嵌入式操作系统等成熟产品和解决方案,实现协议转换与数据集成处理。向上基于开源开发工具、微服务架构等方式快速搭建应用开发环境,实现平台应用创新与现有软件迁移。
(二)强化工业知识积累与分析能力,增强平台**竞争力平台企业应重视生产经验、工业机理的提炼与积累,推动物理、化学、机械、控制多学科知识与大数据、机器学习、人工智能等智能化分析技术的**融合,转化为解决工业生产痛点问题的特色平台服务。加强与行业企业合作,实现跨领域工业知识获取、融合与转化,不断拓展平台业务覆盖范围。大力培养具备工业知识和信息技术应用能力的复合型人才,为平台能力提升发展奠定坚实基础。
(三)注重创新和开放的重要性,打造平台应用生态汇聚形成丰富的创新型应用是平台发展的关键,这不是依靠单个或少数企业就能实现的。在平台发展中,一方面要加强与各类行业客户、服务企业的协同合作,发挥其在所属领域的知识经验和资源优势,基于平台形成一系列重量级工业应用;另一方面,积极打造开发者社区,通过提供开发工具、开发环境和微服务组件,吸引第三方开发者向平台聚集,形成一系列面向特定领域、特定场景、特定功能的创新型工业应用。
(四)聚焦优势领域,实现平台差异化发展平台企业应重点围绕自身优势,形成差异化的平台发展路径。一是具备较强行业积累的平台企业,通过将自身知识、经验与数据固化,形成可广泛复制的应用服务模式,通过在本行业本领域精耕细作实现平台的规模化发展;二是具备特定技术优势的平台企业,应加强与制造企业紧密合作,将**技术与行业特性深度结合,通过平台技术授权、二次集成、资源服务等方式实现平台的广泛部署。平台可依托其**优势实现跨行业跨领域发展,提升产业链上下游**带动作用,形成商业模式和发展路径创新。
工业互联网平台体系架构
工业互联网平台是面向制造业数字化、网络化、智能化需求,构建基于海量数据采集、汇聚、分析的服务体系,支撑制造资源泛在连接、弹性供给、配置的工业云平台,包括边缘、平台(工业PaaS)、应用**层级。可以认为,工业互联网平台是工业云平台的延伸发展,其本质是在传统云平台的基础上叠加物联网、大数据、人工智能等新兴技术,构建较精准、实时、的数据采集体系,建设包括存储、集成、访问、分析、管理功能的使能平台,实现工业技术、经验、知识模型化、软件化、复用化,以工业APP的形式为制造企业各类创新应用,终形成资源富集、多方参与、合作共赢、协同演进的制造业生态。
层是边缘,通过大范围、深层次的数据采集,以及异构数据的协议转换和边缘处理,构建工业互联网平台的数据基础。一是通过各类通信手段接入不同设备、系统和产品,采集海量数据;二是依托协议转换技术实现多源异构数据的归一化和边缘集成;三是利用边缘计算设备实现底层数据的汇聚处理,并实现数据向云端平台的集成。*二层是平台,基于通用 PaaS叠加大数据处理、工业数据分析、工业微服务等创新功能,构建可扩展的开放式云操作系统。一是提供工业数据管理能力,将数据科学与工业机理结合,帮助制造企业构建工业数据分析能力,实现数据**挖掘;二是把技术、知识、经验等资源转化为可移植、可复用的工业微服务组件库,供开发者调用;三是构建应用开发环境,借助微服务组件和工业应用开发工具,帮助用户快速构建定制化的工业APP。
*三层是应用,形成满足不**业、不同场景的工业SaaS和工业 APP,形成工业互联网平台的终**。一是提供了设计、生产、管理、服务等一系列创新性应用。二是构建了良好的工业APP创新环境,使开发者基于平台数据及微服务功能实现应用创新。
除此之外,工业互联网平台还包括 IaaS基础设施,以及涵盖整个工业系统的安全管理体系,这些构成了工业互联网平台的基础支撑和重要**。泛在连接、云化服务、知识积累、应用创新是辨识工业互联网平台的特征。一是泛在连接,具备对设备、软件、人员等各类生产要素数据的全面采集能力。二是云化服务,实现基于云计算架构的海量数据存储、管理和计算。三是知识积累,能够提供基于工业知识机理的数据分析能力,并实现知识的固化、积累和复用。四是应用创新,能够调用平台功能及资源,提供开放的工业APP开发环境,实现工业APP创新应用。
工业互联网平台发展的背景(引用)
1.制造业变革与数字经济发展实现历史汇**新一轮科技革命和产业变革蓬勃兴起,制造业重新成为**经济竞争的焦点。世界主要发达国家采取了一系列重大举措推动制造业转型升级,德国依托雄厚的自动化基础,推进工业4.0。美国在实施制造战略的同时,大力发展工业互联网方向。另外同时,法、日、韩、瑞典等国也纷纷推出制造业振兴计划。各国新型制造战略的**都是通过构建新型生产方式与发展模式,推动传统制造业转型升级,重塑制造强国新优势。数字经济浪潮席卷**,驱动传统产业加速变革。互联网的发展较大地改变了人们的生活方式,构筑了全新的信息产业体系,并且通过技术和模式创新不断渗透影响传统领域,为**经济增长注入新动力。随着数字经济与实体经济加速融合,互联网技术、理念和模式将向更多的实体经济领域渗透,为传统产业变革带来巨大机遇。伴随制造业变革与数字经济浪潮交汇融合,云计算、物联网、大数据等信息技术与制造技术、工业知识的集成创新不断加剧,工业互联网平台应运而生。
2.制造业转型对数字化平台工具提出新需求
制造业需要海量数据管理工具。随着物联网向制造领域的加速渗透,工业数据采集频率显著提升,采集范围不断扩大,驱动工业系统从物理空间向信息空间延伸,由此可见世界向不可见世界的扩展。这一背景下,制造数据的规模、类型和速度正在呈指数级增长,需要一个全新数据管理工具,实现海量数据低成本、高可靠的存储和管理。制造业需要新型业务交互手段。制造企业间业务协同日益频繁,对信息化软件的依赖程度也越来越高,PLM系统、ERP系统、MES系统、以及各类设计软件不仅需要协调管理好企业内部资源,还需要良好支撑不同企业间资源与业务的交互,需要新型交互工具,实现不同主体、不同系统间的集成。
制造业需要开放创新载体。工业场景高度复杂,行业知识千差万别,传统由少数大型企业驱动的应用创新模式,难以满足海量制造企业精细化、差异化的转型需求,需要构建一个开放合作的创态,在工业知识积累、复用的基础上,实现应用创新的爆发式增长。数据集成、业务交互、开放创新成为工业互联网平台快速发展的主要驱动力量。
3.信息技术为制造业发展注入新动力
新型信息技术重塑制造业数字化基础。云计算为制造企业带来较灵活、较经济、较可靠的数据存储和软件运行环境,物联网帮助制造企业有效收集设备、产线和生产现场成千上万种不同类型的数据,人工智能强化了制造企业的数据洞察能力,实现智能化的管理和控制,这些都是推动制造企业数字化转型的新基础。开放互联网理念变革传统制造模式。通过网络化平台组织生产经营活动,制造企业能够实现资源快速整合利用,低成本快速响应市场需求,催生个性化定制、网络化协同等新模式新业态。平台经济不断创新商业模式。信息技术与制造技术的融合带动信息经济、知识经济、分享经济等新经济模式加速向工业领域渗透,培育增长新动能。互联网技术、理念和商业模式成为构建工业互联网平台的重要方式。
边缘和云端协同成为平台重要发展方向
1.基于边缘的多协议转换强化平台数据接入能力
大部分平台均提出了协议转换和云端协同技术方案,实现设备、传感器、PLC、控制系统、管理软件等不同来源的海量数据在云端的集成与汇聚。基于网关的多协议转换正获得普遍应用,GE通过将数据采集转换模块Predix Machine部署在现场传感器、控制器和网关,利用OPC UA技术实现工业以太网、工业总线等不同协议的转换。Oracle IoT Cloud Service面向设备远程管理业务,通过“软件网关”实现对行业通信协议的支持。西门子通过在设备端部署数据采集模块 MindConnect Nano,实现通用协议兼容和私有协议转换。基于操作系统和芯片的原生集成正成为重要创新方向。如Intel推出Wind River Edge Management System嵌入式管理系统,实现设备与Intel IoT Platform的直接互联。Ayla IoT Platform与博通、高通、意法半导体等芯片成员合作,将平台接口内嵌在芯片中,直接从芯片层面支持边缘与云端的互联。
2.边缘数据处理和缓存技术有效提升平台承载能力
工业生产过程中高频数据采集,往往会对网络传输、平台存储与计算处理等方面带来性能和成本上的巨大压力,在边缘层进行数据的预处理和缓存,正成为主要平台企业的共同做法。一是在边缘层进行数据预处理,去除冗余数据,减轻平台负载压力。例如,SAP Leonardo Edge Platform与Dell边缘网关集成,实现边缘数据的实时预处理。华为推出 EC-IoT解决方案基于敏捷网关能够大幅缩短业务上线时间,降低运营成本50%以上。二是利用边缘缓存保留工业现场全量数据,并通过缓存设备直接导入数据中心,降低网络使用成本。例如亚马逊推出的AWS SnowballEdge、微软Azure数据盒、以及谷歌的Transfer Appliance,以100TB级别的容量支持现场数据临时存储,通过实体运输将数据上传到数据中心,简化数据传输过程并尽可能减少设置与集成工作。在风电场的实际应用中,Snowball Edge主要解决无网络偏远地区的数据存储上云问题。在制造企业的实际应用中,Snowball Edge主要替代上位机或私有云保存现场数据。
3.边缘分析技术显著增强平台实时分析能力
为了较好满足工业用户的实时性、可靠性要求,越来越多的平台运营企业开始将计算能力下放到较为靠近物或数据源头的网络边缘侧。一是边缘层直接运行实时分析算法,例如微软较新Azure IoT Edge服务,新增了机器学习、认知服务、流数据分析等功能,支持在嵌入式边缘设备上运行复杂分析和人工智能算法,微软与金属切削企业Sandvik Coromant合作,基于Azure IoT Edge在边缘实现了流数据分析和机器学习算法,使故障处理时延从云端处理的2秒缩短到边缘处理的0.1秒。二是边缘与平台协同,实现模型不断迭代和优化。例如,PTC在ThingWorx平台中集成能够实时发现边缘设备异常的ThingWatcher模块,并与云端分析交互共享,实现模型迭代生长。
龙兴物联坚持以客户为中心,7×热线支持及技术咨询服务,包括热线电话、远程协助等方式,解答用户日常使用及运维中的问题,提供方便快捷的技术支撑服务。
龙兴物联科技有限公司是一家专注于工业物联网和大数据的技术驱动型公司,有深厚的研发背景。我们将持续为客户提供通信/数据/平台服务,提供有竞争力的产品和解决方案,坚持围绕客户需求持续创新,加大基础研究投入,厚积薄发,助力客户数字化。 龙兴物联将以“求真/务实/创新”为,坚持聚焦在主航道,以客户为中心,以奋斗者为本,长期艰苦奋斗。从利他精神出发,保持“开放/合作/共赢”心态,与合作伙伴一起,发展产业群聚效益,建立良性循环的企业成长模式,构建万物互联的数字世界。